Suppr超能文献

线性语义变换在半监督医学图像分割中的应用。

Linear semantic transformation for semi-supervised medical image segmentation.

机构信息

School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, 100024, China.

出版信息

Comput Biol Med. 2024 May;173:108331. doi: 10.1016/j.compbiomed.2024.108331. Epub 2024 Mar 21.

Abstract

Medical image segmentation is a focus research and foundation in developing intelligent medical systems. Recently, deep learning for medical image segmentation has become a standard process and succeeded significantly, promoting the development of reconstruction, and surgical planning of disease diagnosis. However, semantic learning is often inefficient owing to the lack of supervision of feature maps, resulting in that high-quality segmentation models always rely on numerous and accurate data annotations. Learning robust semantic representation in latent spaces remains a challenge. In this paper, we propose a novel semi-supervised learning framework to learn vital attributes in medical images, which constructs generalized representation from diverse semantics to realize medical image segmentation. We first build a self-supervised learning part that achieves context recovery by reconstructing space and intensity of medical images, which conduct semantic representation for feature maps. Subsequently, we combine semantic-rich feature maps and utilize simple linear semantic transformation to convert them into image segmentation. The proposed framework was tested using five medical segmentation datasets. Quantitative assessments indicate the highest scores of our method on IXI (73.78%), ScaF (47.50%), COVID-19-Seg (50.72%), PC-Seg (65.06%), and Brain-MR (72.63%) datasets. Finally, we compared our method with the latest semi-supervised learning methods and obtained 77.15% and 75.22% DSC values, respectively, ranking first on two representative datasets. The experimental results not only proved that the proposed linear semantic transformation was effectively applied to medical image segmentation, but also presented its simplicity and ease-of-use to pursue robust segmentation in semi-supervised learning. Our code is now open at: https://github.com/QingYunA/Linear-Semantic-Transformation-for-Semi-Supervised-Medical-Image-Segmentation.

摘要

医学图像分割是开发智能医疗系统的重点研究和基础。最近,用于医学图像分割的深度学习已经成为标准流程,并取得了显著的成功,推动了疾病诊断的重建和手术规划的发展。然而,由于特征图缺乏监督,语义学习往往效率低下,导致高质量的分割模型总是依赖于大量准确的数据标注。在潜在空间中学习鲁棒的语义表示仍然是一个挑战。在本文中,我们提出了一种新的半监督学习框架,用于学习医学图像中的重要属性,该框架从不同的语义构建广义表示,以实现医学图像分割。我们首先构建了一个自监督学习部分,通过重建医学图像的空间和强度来实现上下文恢复,从而对特征图进行语义表示。然后,我们结合语义丰富的特征图,并利用简单的线性语义变换将其转换为图像分割。我们的框架在五个医学分割数据集上进行了测试。定量评估表明,我们的方法在 IXI(73.78%)、ScaF(47.50%)、COVID-19-Seg(50.72%)、PC-Seg(65.06%)和 Brain-MR(72.63%)数据集上的得分最高。最后,我们将我们的方法与最新的半监督学习方法进行了比较,分别获得了 77.15%和 75.22%的 DSC 值,在两个代表性数据集上排名第一。实验结果不仅证明了我们提出的线性语义变换有效地应用于医学图像分割,而且还展示了其在半监督学习中追求鲁棒分割的简单性和易用性。我们的代码现在可以在:https://github.com/QingYunA/Linear-Semantic-Transformation-for-Semi-Supervised-Medical-Image-Segmentation 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验