Suppr超能文献

用于医学图像的结构张量与频率引导半监督分割

Structural tensor and frequency guided semi-supervised segmentation for medical images.

作者信息

Leng Xuesong, Wang Xiaxia, Yue Wenbo, Jin Jianxiu, Xu Guoping

机构信息

School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, Hubei, China.

School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China.

出版信息

Med Phys. 2024 Dec;51(12):8929-8942. doi: 10.1002/mp.17399. Epub 2024 Sep 16.

Abstract

BACKGROUND

The method of semi-supervised semantic segmentation entails training with a limited number of labeled samples alongside many unlabeled samples, aiming to reduce dependence on pixel-level annotations. Most semi-supervised semantic segmentation methods primarily focus on sample augmentation in spatial dimensions to reduce the shortage of labeled samples. These methods tend to ignore the structural information of objects. In addition, frequency-domain information also supplies another perspective to evaluate information from images, which includes different properties compared to the spatial domain.

PURPOSE

In this study, we attempt to answer these two questions: (1) is it helpful to provide structural information of objects in semi-supervised semantic segmentation tasks for medical images? (2) is it more effective to evaluate the segmentation performance in the frequency domain compared to the spatial domain for semi-supervised medical image segmentation? Therefore, we seek to introduce structural and frequency information to improve the performance of semi-supervised semantic segmentation for medical images.

METHODS

We present a novel structural tensor loss (STL) to guide feature learning on the spatial domain for semi-supervised semantic segmentation. Specifically, STL utilizes the structural information encoded in the tensors to enforce the consistency of objects across spatial regions, thereby promoting more robust and accurate feature extraction. Additionally, we proposed a frequency-domain alignment loss (FAL) to enable the neural networks to learn frequency-domain information across different augmented samples. It leverages the inherent patterns present in frequency-domain representations to guide the network in capturing and aligning features across diverse augmentation variations, thereby enhancing the model's robustness for the inputting variations.

RESULTS

We conduct our experiments on three benchmark datasets, which include MRI (ACDC) for cardiac, CT (Synapse) for abdomen organs, and ultrasound image (BUSI) for breast lesion segmentation. The experimental results demonstrate that our method outperforms state-of-the-art semi-supervised approaches regarding the Dice similarity coefficient.

CONCLUSIONS

We find the proposed approach could improve the final performance of the semi-supervised medical image segmentation task. It will help reduce the need for medical image labels. Our code will are available at https://github.com/apple1986/STLFAL.

摘要

背景

半监督语义分割方法需要使用有限数量的标记样本和许多未标记样本进行训练,旨在减少对像素级注释的依赖。大多数半监督语义分割方法主要侧重于空间维度上的样本增强,以减少标记样本的短缺。这些方法往往忽略了物体的结构信息。此外,频域信息也提供了另一个评估图像信息的视角,与空间域相比,它具有不同的特性。

目的

在本研究中,我们试图回答以下两个问题:(1)在医学图像的半监督语义分割任务中提供物体的结构信息是否有帮助?(2)与空间域相比,在频域中评估半监督医学图像分割的性能是否更有效?因此,我们试图引入结构和频率信息来提高医学图像半监督语义分割的性能。

方法

我们提出了一种新颖的结构张量损失(STL),用于指导半监督语义分割在空间域上的特征学习。具体而言,STL利用张量中编码的结构信息来强制物体在空间区域之间的一致性,从而促进更鲁棒和准确的特征提取。此外,我们提出了一种频域对齐损失(FAL),以使神经网络能够跨不同的增强样本学习频域信息。它利用频域表示中存在的固有模式来指导网络捕获和对齐不同增强变化中的特征,从而增强模型对输入变化的鲁棒性。

结果

我们在三个基准数据集上进行了实验,包括用于心脏的MRI(ACDC)、用于腹部器官的CT(Synapse)以及用于乳腺病变分割的超声图像(BUSI)。实验结果表明,在骰子相似系数方面,我们的方法优于现有的半监督方法。

结论

我们发现所提出的方法可以提高半监督医学图像分割任务的最终性能。这将有助于减少对医学图像标签的需求。我们的代码可在https://github.com/apple1986/STLFAL获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验