Neurophotonics and Mechanical Systems Biology, ICFO, Institut de Ciències Fotòniques, 08860 Castelldefels, Spain.
Cellular Nanoscience, ZMBP, University of Tübingen, 72076 Tübingen, Germany.
J Cell Sci. 2022 Aug 1;135(15). doi: 10.1242/jcs.259355. Epub 2022 Aug 9.
Cellular and tissue biosystems emerge from the assembly of their constituent molecules and obtain a set of specific material properties. To measure these properties and understand how they influence cellular function is a central goal of mechanobiology. From a bottoms-up, physics or engineering point-of-view, such systems are a composition of basic mechanical elements. However, the sheer number and dynamic complexity of them, including active molecular machines and their emergent properties, makes it currently intractable to calculate how biosystems respond to forces. Because many diseases result from an aberrant mechanotransduction, it is thus essential to measure this response. Recent advances in the technology of optical tweezers have broadened their scope from single-molecule applications to measurements inside complex cellular environments, even within tissues and animals. Here, we summarize the basic optical trapping principles, implementations and calibration procedures that enable force measurements using optical tweezers directly inside cells of living animals, in combination with complementary techniques. We review their versatility to manipulate subcellular organelles and measure cellular frequency-dependent mechanics in the piconewton force range from microseconds to hours. As an outlook, we address future challenges to fully unlock the potential of optical tweezers for mechanobiology.
细胞和组织生物系统从其组成分子的组装中出现,并获得一组特定的材料特性。测量这些特性并了解它们如何影响细胞功能是机械生物学的一个核心目标。从自下而上的、物理或工程的角度来看,这样的系统是基本机械元件的组合。然而,它们的数量和动态复杂性,包括活跃的分子机器及其涌现的特性,使得计算生物系统如何对力做出反应目前还难以处理。由于许多疾病是由于机械转导异常引起的,因此测量这种反应是至关重要的。近年来,光学镊子技术的进步拓宽了其应用范围,从单分子应用扩展到复杂细胞环境中的测量,甚至在组织和动物内部。在这里,我们总结了基本的光学捕获原理、实现和校准程序,这些程序使我们能够直接在活体动物细胞内使用光学镊子进行力测量,同时结合互补技术。我们回顾了它们在操纵亚细胞细胞器和测量皮牛顿力范围内的细胞频率相关力学方面的多功能性,从微秒到小时。作为展望,我们将讨论未来的挑战,以充分释放光学镊子在机械生物学中的潜力。