Suppr超能文献

超表面控制的全息微腔

Metasurface-Controlled Holographic Microcavities.

作者信息

Mason Sydney, Meretska Maryna Leonidivna, Spägele Christina, Ossiander Marcus, Capasso Federico

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Institute of Experimental Physics, Graz University of Technology, 8010 Graz, Austria.

出版信息

ACS Photonics. 2024 Feb 15;11(3):941-949. doi: 10.1021/acsphotonics.3c01479. eCollection 2024 Mar 20.

Abstract

Optical microcavities confine light to wavelength-scale volumes and are a key component for manipulating and enhancing the interaction of light, vacuum states, and matter. Current microcavities are constrained to a small number of spatial mode profiles. Imaging cavities can accommodate complicated modes but require an externally preshaped input. Here, we experimentally demonstrate a visible-wavelength, metasurface-based holographic microcavity that overcomes these limitations. The micrometer-scale metasurface cavity fulfills the round-trip condition for a designed mode with a complex-shaped intensity profile and thus selectively enhances light that couples to this mode, achieving a spectral bandwidth of 0.8 nm. By imaging the intracavity mode, we show that the holographic mode changes quickly with the cavity length and that the cavity displays the desired spatial mode profile only close to the design cavity length. When a metasurface is placed on a distributed Bragg reflector and steep phase gradients are realized, the correct choice of the reflector's top layer material can boost metasurface performance considerably. The applied forward-design method can be readily transferred to other spectral regimes and mode profiles.

摘要

光学微腔将光限制在波长尺度的体积内,是操纵和增强光、真空态与物质相互作用的关键组件。当前的微腔局限于少数空间模式分布。成像腔可以容纳复杂模式,但需要外部预成型输入。在此,我们通过实验展示了一种基于超表面的可见波长全息微腔,它克服了这些限制。微米级超表面腔满足了具有复杂形状强度分布的设计模式的往返条件,从而选择性地增强耦合到该模式的光,实现了0.8纳米的光谱带宽。通过对腔内模式成像,我们表明全息模式随腔长度快速变化,并且该腔仅在接近设计腔长度时才呈现所需的空间模式分布。当超表面放置在分布式布拉格反射器上并实现陡峭的相位梯度时,正确选择反射器的顶层材料可显著提高超表面性能。所应用的正向设计方法可轻松转移到其他光谱范围和模式分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a405/10958604/d981c6956507/ph3c01479_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验