Suppr超能文献

皮肤镜检查中的人工智能:加强诊断以区分良性和恶性皮肤病变。

Artificial Intelligence in Dermoscopy: Enhancing Diagnosis to Distinguish Benign and Malignant Skin Lesions.

作者信息

Reddy Shreya, Shaheed Avneet, Patel Rakesh

机构信息

Biomedical Sciences, Creighton University, Omaha, USA.

Pathology, University of Illinois College of Medicine, Chicago, USA.

出版信息

Cureus. 2024 Feb 21;16(2):e54656. doi: 10.7759/cureus.54656. eCollection 2024 Feb.

Abstract

This study presents an innovative application of artificial intelligence (AI) in distinguishing dermoscopy images depicting individuals with benign and malignant skin lesions. Leveraging the collaborative capabilities of Google's platform, the developed model exhibits remarkable efficiency in achieving accurate diagnoses. The model underwent training for a mere one hour and 33 minutes, utilizing Google's servers to render the process both cost-free and carbon-neutral. Utilizing a dataset representative of both benign and malignant cases, the AI model demonstrated commendable performance metrics. Notably, the model achieved an overall accuracy, precision, recall (sensitivity), specificity, and F1 score of 92%. These metrics underscore the model's proficiency in distinguishing between benign and malignant skin lesions. The use of Google's Collaboration platform not only expedited the training process but also exemplified a cost-effective and environmentally sustainable approach. While these findings highlight the potential of AI in dermatopathology, it is crucial to recognize the inherent limitations, including dataset representativity and variations in real-world clinical scenarios. This study contributes to the evolving landscape of AI applications in dermatologic diagnostics, showcasing a promising tool for accurate lesion classification. Further research and validation studies are recommended to enhance the model's robustness and facilitate its integration into clinical practice.

摘要

本研究展示了人工智能(AI)在区分描绘良性和恶性皮肤病变个体的皮肤镜图像方面的创新应用。利用谷歌平台的协作能力,所开发的模型在实现准确诊断方面表现出显著的效率。该模型仅经过1小时33分钟的训练,利用谷歌的服务器使该过程既免费又碳中和。利用一个代表良性和恶性病例的数据集,该人工智能模型展示了值得称赞的性能指标。值得注意的是,该模型的总体准确率、精确率、召回率(敏感性)、特异性和F1分数达到了92%。这些指标突出了该模型在区分良性和恶性皮肤病变方面的能力。谷歌协作平台的使用不仅加快了训练过程,还体现了一种经济高效且环境可持续的方法。虽然这些发现凸显了人工智能在皮肤病理学中的潜力,但认识到其固有局限性至关重要,包括数据集的代表性以及现实世界临床场景中的差异。本研究为人工智能在皮肤病诊断中的应用不断发展的格局做出了贡献,展示了一种用于准确病变分类的有前景的工具。建议进行进一步的研究和验证研究,以提高模型的稳健性并促进其融入临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d5/10959827/ad4c40282583/cureus-0016-00000054656-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验