Suppr超能文献

内在噪声:通过哺乳动物耳蜗中的相干波放大实现信噪比增强。

Noise within: Signal-to-noise enhancement via coherent wave amplification in the mammalian cochlea.

作者信息

Altoè Alessandro, Shera Christopher A

机构信息

Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California Los Angeles, Los Angeles, California 90033, USA.

出版信息

Phys Rev Res. 2024 Jan-Mar;6(1). doi: 10.1103/physrevresearch.6.013084. Epub 2024 Jan 23.

Abstract

The extraordinary sensitivity of the mammalian inner ear has captivated scientists for decades, largely due to the crucial role played by the outer hair cells (OHCs) and their unique electromotile properties. Typically arranged in three rows along the sensory epithelium, the OHCs work in concert via mechanisms collectively referred to as the "cochlear amplifier" to boost the cochlear response to faint sounds. While simplistic views attribute this enhancement solely to the OHC-based increase in cochlear gain, the inevitable presence of internal noise requires a more rigorous analysis. Achieving a genuine boost in sensitivity through amplification requires that signals be amplified more than internal noise, and this requirement presents the cochlea with an intriguing challenge. Here we analyze the effects of spatially distributed cochlear-like amplification on both signals and internal noise. By combining a straightforward mathematical analysis with a simplified model of cochlear mechanics designed to capture the essential physics, we generalize previous results about the impact of spatially coherent amplification on signal degradation in active gain media. We identify and describe the strategy employed by the cochlea to amplify signals more than internal noise and thereby enhance the sensitivity of hearing. For narrow-band signals, this effective, wave-based strategy consists of spatially amplifying the signal within a localized cochlear region, followed by rapid attenuation. Location-dependent wave amplification and attenuation meet the necessary conditions for amplifying near-characteristic frequency (CF) signals more than internal noise components of the same frequency. Our analysis reveals that the sharp wave cutoff past the CF location greatly reduces noise contamination. The distinctive asymmetric shape of the "cochlear filters" thus underlies a crucial but previously unrecognized mechanism of cochlear noise reduction.

摘要

几十年来,哺乳动物内耳的非凡敏感性一直吸引着科学家,这主要归功于外毛细胞(OHC)所发挥的关键作用及其独特的电运动特性。OHC通常沿着感觉上皮排列成三排,它们通过统称为“耳蜗放大器”的机制协同工作,以增强耳蜗对微弱声音的反应。虽然简单的观点将这种增强仅仅归因于基于OHC的耳蜗增益增加,但内部噪声的必然存在需要更严格的分析。通过放大实现真正的灵敏度提高要求信号的放大倍数超过内部噪声,而这一要求给耳蜗带来了一个有趣的挑战。在这里,我们分析了空间分布的类耳蜗放大对信号和内部噪声的影响。通过将简单的数学分析与旨在捕捉基本物理原理的耳蜗力学简化模型相结合,我们推广了先前关于空间相干放大对有源增益介质中信号退化影响的结果。我们识别并描述了耳蜗用于放大信号超过内部噪声从而提高听力灵敏度的策略。对于窄带信号,这种有效的、基于波的策略包括在局部耳蜗区域内对信号进行空间放大,然后快速衰减。位置依赖的波放大和衰减满足了放大近特征频率(CF)信号超过相同频率内部噪声分量的必要条件。我们的分析表明,CF位置之后的尖锐波截止大大降低了噪声污染。因此,“耳蜗滤波器”独特的不对称形状构成了耳蜗降噪的一个关键但此前未被认识到的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/10959500/ec35d2364cfa/nihms-1970773-f0003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验