Suppr超能文献

增强肺结节分类:一种新颖的结合图像预处理的 CViEBi-CBGWO 方法。

Enhancing Lung Nodule Classification: A Novel CViEBi-CBGWO Approach with Integrated Image Preprocessing.

机构信息

Department of Information Technology, St. Joseph's College of Engineering, Chennai, India.

Department of Artificial Intelligence and Data Science, Panimalar Engineering College, Chennai, India.

出版信息

J Imaging Inform Med. 2024 Oct;37(5):2108-2125. doi: 10.1007/s10278-024-01074-1. Epub 2024 Mar 25.

Abstract

Cancer detection and accurate classification pose significant challenges for medical professionals, as it is described as a lethal illness. Diagnosing the malignant lung nodules in its initial stage significantly enhances the recovery and survival rates. Therefore, a novel model named convolutional vision Elman bidirectional-based crossover boosted grey wolf optimization (CViEBi-CBGWO) has been proposed to enhance classification accuracy. CT images selected for further preprocessing are obtained from the LUNA16 dataset and LIDC-IDRI dataset. The data undergoes preprocessing phases involving normalization, data augmentation, and filtering to improve the generalization ability as well as image quality. The local features within the preprocessed images are extracted by implementing the convolutional neural network (CNN). For extracting the global features within the preprocessed images, the vision transformer (ViT) model consists of five encoder blocks. The attained local and global features are combined to generate the feature map. The Elman bidirectional long short-term memory (EBiLSTM) model is applied to categorize the generated feature map as benign and malignant. The crossover operation is integrated with the grey wolf optimization (GWO) algorithm, and the combined form of CBGWO fine-tunes the parameters of the CViEBi model, eliminating the problem of local optima. Experimental validation is conducted using various evaluation measures to assess effectiveness. Comparative analysis demonstrates a superior classification accuracy of 98.72% in the proposed method compared to existing methods.

摘要

癌症检测和准确分类对医学专业人员来说是一个巨大的挑战,因为癌症被描述为一种致命的疾病。在早期诊断恶性肺结节可以显著提高患者的康复率和存活率。因此,提出了一种名为卷积视觉 Elman 双向交叉蝙蝠优化(CViEBi-CBGWO)的新型模型,以提高分类准确性。用于进一步预处理的 CT 图像是从 LUNA16 数据集和 LIDC-IDRI 数据集获得的。对数据进行预处理阶段,包括归一化、数据增强和滤波,以提高泛化能力和图像质量。通过实施卷积神经网络(CNN)提取预处理图像中的局部特征。为了提取预处理图像中的全局特征,视觉转换器(ViT)模型由五个编码器块组成。获取的局部和全局特征被组合以生成特征图。Elman 双向长短期记忆(EBiLSTM)模型用于对生成的特征图进行分类,将其分为良性和恶性。交叉操作与灰狼优化(GWO)算法集成,组合形式的 CBGWO 微调 CViEBi 模型的参数,解决了局部最优的问题。通过使用各种评估措施进行实验验证,评估有效性。与现有方法相比,所提出的方法在分类准确性方面的比较分析显示出 98.72%的优越性。

相似文献

1
Enhancing Lung Nodule Classification: A Novel CViEBi-CBGWO Approach with Integrated Image Preprocessing.
J Imaging Inform Med. 2024 Oct;37(5):2108-2125. doi: 10.1007/s10278-024-01074-1. Epub 2024 Mar 25.
3
An improved 3-D attention CNN with hybrid loss and feature fusion for pulmonary nodule classification.
Comput Methods Programs Biomed. 2023 Feb;229:107278. doi: 10.1016/j.cmpb.2022.107278. Epub 2022 Nov 26.
4
Overcoming the Challenge of Accurate Segmentation of Lung Nodules: A Multi-crop CNN Approach.
J Imaging Inform Med. 2024 Jun;37(3):988-1007. doi: 10.1007/s10278-024-01004-1. Epub 2024 Feb 12.
5
Classification of benign and malignant lung nodules from CT images based on hybrid features.
Phys Med Biol. 2019 Jun 20;64(12):125011. doi: 10.1088/1361-6560/ab2544.
6
A novel fusion algorithm for benign-malignant lung nodule classification on CT images.
BMC Pulm Med. 2023 Nov 28;23(1):474. doi: 10.1186/s12890-023-02708-w.
7
Res-trans networks for lung nodule classification.
Int J Comput Assist Radiol Surg. 2022 Jun;17(6):1059-1068. doi: 10.1007/s11548-022-02576-5. Epub 2022 Mar 15.
8
Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss.
J Healthc Eng. 2019 Feb 4;2019:5156416. doi: 10.1155/2019/5156416. eCollection 2019.
9
LGDNet: local feature coupling global representations network for pulmonary nodules detection.
Med Biol Eng Comput. 2024 Jul;62(7):1991-2004. doi: 10.1007/s11517-024-03043-w. Epub 2024 Mar 2.

本文引用的文献

1
Self-attention-based generative adversarial network optimized with color harmony algorithm for brain tumor classification.
Electromagn Biol Med. 2024 Apr 2;43(1-2):31-45. doi: 10.1080/15368378.2024.2312363. Epub 2024 Feb 18.
2
Optimizing rice plant disease detection with crossover boosted artificial hummingbird algorithm based AX-RetinaNet.
Environ Monit Assess. 2023 Aug 23;195(9):1070. doi: 10.1007/s10661-023-11612-z.
4
A new lung cancer detection method based on the chest CT images using Federated Learning and blockchain systems.
Artif Intell Med. 2023 Jul;141:102572. doi: 10.1016/j.artmed.2023.102572. Epub 2023 May 4.
6
Artificial Humming Bird Optimization-Based Hybrid CNN-RNN for Accurate Exudate Classification from Fundus Images.
J Digit Imaging. 2023 Feb;36(1):59-72. doi: 10.1007/s10278-022-00707-7. Epub 2022 Oct 14.
8
Two-stage lung nodule detection framework using enhanced UNet and convolutional LSTM networks in CT images.
Comput Biol Med. 2022 Oct;149:106059. doi: 10.1016/j.compbiomed.2022.106059. Epub 2022 Sep 3.
9
Lung Cancer Classification and Prediction Using Machine Learning and Image Processing.
Biomed Res Int. 2022 Aug 22;2022:1755460. doi: 10.1155/2022/1755460. eCollection 2022.
10
Possible Bias in Supervised Deep Learning Algorithms for CT Lung Nodule Detection and Classification.
Cancers (Basel). 2022 Aug 10;14(16):3867. doi: 10.3390/cancers14163867.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验