Department of Computer Science and Engineering, GMR Institute of Technology, Andhra Pradesh, India.
Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Tamil Nadu, India.
Comput Biol Med. 2022 Oct;149:106059. doi: 10.1016/j.compbiomed.2022.106059. Epub 2022 Sep 3.
Lung cancer is one of the leading causes of cancer deaths globally, and lung nodules are the primary indicators that aid in early detection. The computer-aided detection (CADe) system acts as a second reader, reducing the variability in lung cancer risk assessment across physicians. This work aims to improve the performance of CADe systems by developing high sensitive and resilient detection networks using deep learning. This paper proposes a novel CADe framework to detect nodules from CT scans using an enhanced UNet in conjunction with a pyramid dilated convolutional long short term memory (PD-CLSTM) network. The proposed CADe system works in two stages: nodule detection and false nodule elimination. In the first stage, a modified UNet-based model, Atrous UNet+, is proposed to detect nodule candidates from axial slices using dilation and ensemble mechanisms. Dilated convolution is a powerful technique for dense prediction by incorporating larger context information without increasing the computation load. Ensemble skip connections fuse multilevel semantic features that help detect nodules of diverse sizes. In the second stage, The pyramid dilated convolutional LSTM network is proposed to identify true nodules using inter-slice and intra-slice spatial features of 3D nodule patches. In this work, a novel idea of applying convolution long short-term memory (ConvLSTM) is attempted to categorize true nodules from false nodules and help to eliminate false nodules. Experimental results on the LUNA16 dataset show that our proposed CADe system achieves the best average sensitivity of 0.930 at seven predefined FPRs: 1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs per scan. Also, the proposed CADe system detects small nodules in the range of 5-9 mm with a sensitivity of 0.92 and other nodules (>10 mm) with a sensitivity of 0.93, resulting in a high detection rate in recognizing nodules of diverse sizes.
肺癌是全球癌症死亡的主要原因之一,肺结节是早期检测的主要指标。计算机辅助检测(CADe)系统作为第二读者,可以减少不同医生在肺癌风险评估中的变异性。这项工作旨在通过使用深度学习开发高敏感和高弹性的检测网络来提高 CADe 系统的性能。本文提出了一种新的 CADe 框架,该框架使用增强型 UNet 结合金字塔扩张卷积长短期记忆(PD-CLSTM)网络从 CT 扫描中检测结节。所提出的 CADe 系统分两个阶段工作:结节检测和假结节消除。在第一阶段,提出了一种基于改进的 UNet 的模型 Atrous UNet+,该模型使用扩张和集成机制从轴向切片中检测结节候选物。扩张卷积是一种通过在不增加计算负载的情况下合并更大的上下文信息来进行密集预测的强大技术。集成跳过连接融合了多级别语义特征,有助于检测不同大小的结节。在第二阶段,提出了一种金字塔扩张卷积 LSTM 网络,该网络使用 3D 结节补丁的切片间和片内空间特征来识别真正的结节。在这项工作中,尝试了一种应用卷积长短期记忆(ConvLSTM)的新想法,从假结节中对真结节进行分类,并帮助消除假结节。在 LUNA16 数据集上的实验结果表明,所提出的 CADe 系统在七个预定义的 FPR(1/8、1/4、1/2、1、2、4 和 8 个每扫描 FP)下实现了最佳平均灵敏度 0.930。此外,所提出的 CADe 系统还可以检测 5-9mm 范围内的小结节,灵敏度为 0.92,其他结节(>10mm)灵敏度为 0.93,从而实现了对不同大小结节的高识别率。