Suppr超能文献

构建一种新型氨基酸代谢特征:嗜铬细胞瘤诊断、免疫格局和免疫治疗的新视角。

Constructing a Novel Amino Acid Metabolism Signature: A New Perspective on Pheochromocytoma Diagnosis, Immune Landscape, and Immunotherapy.

作者信息

Yan Zechen, Luan Yongkun, Wang Yu, Ren Yilin, Li Zhiyuan, Zhao Luyang, Shen Linnuo, Yang Xiaojie, Liu Tonghu, Gao Yukui, Sun Weibo

机构信息

BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.

Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.

出版信息

Biochem Genet. 2025 Feb;63(1):850-874. doi: 10.1007/s10528-024-10733-5. Epub 2024 Mar 25.

Abstract

Pheochromocytoma/paraganglioma (PGPG) is a rare neuroendocrine tumor. Amino acid metabolism is crucial for energy production, redox balance, and metabolic pathways in tumor cell proliferation. This study aimed to build a risk model using amino acid metabolism-related genes, enhancing PGPG diagnosis and treatment decisions. We analyzed RNA-sequencing data from the PCPG cohort in the GEO dataset as our training set and validated our findings using the TCGA dataset and an additional clinical cohort. WGCNA and LASSO were utilized to identify hub genes and develop risk prediction models. The single-sample gene set enrichment analysis, MCPCOUNTER, and ESTIMATE algorithm calculated the relationship between amino acid metabolism and immune cell infiltration in PCPG. The TIDE algorithm predicted the immunotherapy efficacy for PCPG patients. The analysis identified 292 genes with differential expression, which are involved in amino acid metabolism and immune pathways. Six genes (DDC, SYT11, GCLM, PSMB7, TYRO3, AGMAT) were identified as crucial for the risk prediction model. Patients with a high-risk profile demonstrated reduced immune infiltration but potentially higher benefits from immunotherapy. Notably, DDC and SYT11 showed strong diagnostic and prognostic potential. Validation through quantitative Real-Time Polymerase Chain Reaction and immunohistochemistry confirmed their differential expression, underscoring their significance in PCPG diagnosis and in predicting immunotherapy response. This study's integration of amino acid metabolism-related genes into a risk prediction model offers critical clinical insights for PCPG risk stratification, potential immunotherapy responses, drug development, and treatment planning, marking a significant step forward in the management of this complex condition.

摘要

嗜铬细胞瘤/副神经节瘤(PGPG)是一种罕见的神经内分泌肿瘤。氨基酸代谢对于肿瘤细胞增殖中的能量产生、氧化还原平衡和代谢途径至关重要。本研究旨在利用与氨基酸代谢相关的基因构建一个风险模型,以改善PGPG的诊断和治疗决策。我们分析了GEO数据集中PCPG队列的RNA测序数据作为训练集,并使用TCGA数据集和另一个临床队列验证了我们的发现。利用加权基因共表达网络分析(WGCNA)和套索回归(LASSO)来识别枢纽基因并开发风险预测模型。单样本基因集富集分析、MCPCOUNTER和ESTIMATE算法计算了PCPG中氨基酸代谢与免疫细胞浸润之间的关系。TIDE算法预测了PGPG患者的免疫治疗疗效。分析确定了292个差异表达基因,这些基因参与氨基酸代谢和免疫途径。六个基因(DDC、SYT11、GCLM、PSMB7、TYRO3、AGMAT)被确定为风险预测模型的关键基因。高风险特征的患者免疫浸润减少,但可能从免疫治疗中获益更大。值得注意的是,DDC和SYT11显示出强大的诊断和预后潜力。通过定量实时聚合酶链反应和免疫组织化学进行验证,证实了它们的差异表达,强调了它们在PGPG诊断和预测免疫治疗反应中的重要性。本研究将与氨基酸代谢相关的基因整合到风险预测模型中,为PGPG风险分层、潜在免疫治疗反应、药物开发和治疗规划提供了关键的临床见解,标志着在管理这种复杂疾病方面向前迈出了重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51f8/11832799/4c7ac9920a01/10528_2024_10733_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验