Suppr超能文献

基于多组学分析的新型预后和免疫治疗基因特征在肺腺癌中的临床及功能意义,该基因特征源自氨基酸代谢途径

Multi-omics analysis-based clinical and functional significance of a novel prognostic and immunotherapeutic gene signature derived from amino acid metabolism pathways in lung adenocarcinoma.

作者信息

Xiang Huihui, Kasajima Rika, Azuma Koichi, Tagami Tomoyuki, Hagiwara Asami, Nakahara Yoshiro, Saito Haruhiro, Igarashi Yuka, Wei Feifei, Ban Tatsuma, Yoshihara Mitsuyo, Nakamura Yoshiyasu, Sato Shinya, Koizume Shiro, Tamura Tomohiko, Sasada Tetsuro, Miyagi Yohei

机构信息

Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan.

Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan.

出版信息

Front Immunol. 2024 Dec 13;15:1361992. doi: 10.3389/fimmu.2024.1361992. eCollection 2024.

Abstract

BACKGROUND

Studies have shown that tumor cell amino acid metabolism is closely associated with lung adenocarcinoma (LUAD) development and progression. However, the comprehensive multi-omics features and clinical impact of the expression of genes associated with amino acid metabolism in the LUAD tumor microenvironment (TME) are yet to be fully understood.

METHODS

LUAD patients from The Cancer Genome Atlas (TCGA) database were enrolled in the training cohort. Using least absolute shrinkage and selection operator Cox regression analysis, we developed PTAAMG-Sig, a signature based on the expression of tumor-specific amino acid metabolism genes associated with overall survival (OS) prognosis. We evaluated its predictive performance for OS and thoroughly explored the effects of the PTAAMG-Sig risk score on the TME. The risk score was validated in two Gene Expression Omnibus (GEO) cohorts and further investigated against an original cohort of chemotherapy combined with immune checkpoint inhibitors (ICIs). Somatic mutation, chemotherapy response, immunotherapy response, gene set variation, gene set enrichment, immune infiltration, and plasma-free amino acids (PFAAs) profile analyses were performed to identify the underlying multi-omics features.

RESULTS

TCGA datasets based PTAAMG-Sig model consisting of nine genes, , and , could effectively stratify the OS in LUAD patients. The two other GEO-independent datasets validated the robust predictive power of PTAAMG-Sig. Our differential analysis of somatic mutations in the high- and low-risk groups in TCGA cohort showed that the mutation rate was significantly higher in the high-risk group and negatively correlated with OS. Prediction from transcriptome data raised the possibility that PTAAMG-Sig could predict the response to chemotherapy and ICIs therapy. Our immunotherapy cohort confirmed the predictive ability of PTAAMG-Sig in the clinical response to ICIs therapy, which correlated with the infiltration of immune cells (e.g., T lymphocytes and nature killer cells). Corresponding to the concentrations of PFAAs, we discovered that the high PTAAMG-Sig risk score patients showed a significantly lower concentration of plasma-free α-aminobutyric acid.

CONCLUSION

In patients with LUAD, the PTAAMG-Sig effectively predicted OS, drug sensitivity, and immunotherapy outcomes. These findings are expected to provide new targets and strategies for personalized treatment of LUAD patients.

摘要

背景

研究表明,肿瘤细胞氨基酸代谢与肺腺癌(LUAD)的发生和发展密切相关。然而,LUAD肿瘤微环境(TME)中与氨基酸代谢相关基因表达的综合多组学特征及其临床影响尚未完全明确。

方法

来自癌症基因组图谱(TCGA)数据库的LUAD患者被纳入训练队列。使用最小绝对收缩和选择算子Cox回归分析,我们开发了PTAAMG-Sig,这是一种基于与总生存(OS)预后相关的肿瘤特异性氨基酸代谢基因表达的特征。我们评估了其对OS的预测性能,并深入探讨了PTAAMG-Sig风险评分对TME的影响。该风险评分在两个基因表达综合数据库(GEO)队列中进行了验证,并针对一个化疗联合免疫检查点抑制剂(ICI)的原始队列进行了进一步研究。进行了体细胞突变、化疗反应、免疫治疗反应、基因集变异、基因集富集、免疫浸润和游离氨基酸(PFAA)谱分析,以确定潜在的多组学特征。

结果

基于TCGA数据集的由9个基因组成的PTAAMG-Sig模型能够有效地对LUAD患者的OS进行分层。另外两个独立的GEO数据集验证了PTAAMG-Sig强大地预测能力。我们对TCGA队列中高风险和低风险组体细胞突变的差异分析表明,高风险组的 突变率显著更高,且与OS呈负相关。转录组数据预测提示PTAAMG-Sig可能预测化疗和ICI治疗的反应。我们的免疫治疗队列证实了PTAAMG-Sig在ICI治疗临床反应中的预测能力,这与免疫细胞(如T淋巴细胞和自然杀伤细胞)的浸润相关。对应于PFAA的浓度,我们发现高PTAAMG-Sig风险评分的患者游离α-氨基丁酸的血浆浓度显著更低。

结论

在LUAD患者中,PTAAMG-Sig有效地预测了OS、药物敏感性和免疫治疗结果。这些发现有望为LUAD患者的个性化治疗提供新的靶点和策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d8/11671776/6b086dc42b8d/fimmu-15-1361992-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验