文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

随着年龄的增长和镉处理,Gclm 基因敲除小鼠的葡萄糖内稳定状态持续改善。

Persistence of improved glucose homeostasis in Gclm null mice with age and cadmium treatment.

机构信息

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA.

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA.

出版信息

Redox Biol. 2022 Feb;49:102213. doi: 10.1016/j.redox.2021.102213. Epub 2021 Dec 20.


DOI:10.1016/j.redox.2021.102213
PMID:34953454
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8715110/
Abstract

Antioxidant signaling/communication is among the most important cellular defense and survival pathways, and the importance of redox signaling and homeostasis in aging has been well-documented. Intracellular levels of glutathione (GSH), a very important endogenous antioxidant, both govern and are governed by the Nrf2 pathway through expression of genes involved in its biosynthesis, including the subunits of the rate-limiting enzyme (glutamate cysteine ligase, GCL) in GSH production, GCLC and GCLM. Mice homozygous null for the Gclm gene are severely deficient in GSH compared to wild-type controls, expressing approximately 10% of normal GSH levels. To compensate for GSH deficiency, Gclm null mice have upregulated redox-regulated genes, and, surprisingly, are less susceptible to certain types of oxidative damage. Furthermore, young Gclm null mice display an interesting lean phenotype, resistance to high fat diet-induced diabetes and obesity, improved insulin and glucose tolerance, and decreased expression of genes involved in lipogenesis. However, the persistence of this phenotype has not been investigated into old age, which is important in light of studies which suggest aging attenuates antioxidant signaling, particularly in response to exogenous stimuli. In this work, we addressed whether aging compromises the favorable phenotype of increased antioxidant activity and improved glucose homeostasis observed in younger Gclm null mice. We present data showing that under basal conditions and in response to cadmium exposure (2 mg/kg, dosed once via intraperitoneal injection), the phenotype previously described in young (<6 months) Gclm null mice persists into old age (24+ months). We also provide evidence that transcriptional activation of the Nrf2, AMPK, and PPARγ pathways underlie the favorable metabolic phenotype observed previously in young Gclm null mice.

摘要

抗氧化信号/通讯是最重要的细胞防御和存活途径之一,氧化还原信号和内稳态在衰老中的重要性已得到充分证明。细胞内谷胱甘肽 (GSH) 的水平非常重要,它既是内源性抗氧化剂,又是 Nrf2 途径的调节者,通过其生物合成相关基因的表达来调节 GSH 的产生,包括 GSH 生产中限速酶(谷氨酸半胱氨酸连接酶,GCL)的亚基,GCLC 和 GCLM。与野生型对照相比,Gclm 基因纯合缺失的小鼠 GSH 严重缺乏,表达约正常 GSH 水平的 10%。为了补偿 GSH 缺乏,Gclm 缺失小鼠上调了氧化还原调节基因,令人惊讶的是,它们对某些类型的氧化损伤的敏感性降低。此外,年轻的 Gclm 缺失小鼠表现出有趣的瘦体型,对高脂肪饮食诱导的糖尿病和肥胖具有抗性,改善了胰岛素和葡萄糖耐量,并降低了参与脂肪生成的基因的表达。然而,这种表型的持久性尚未在老年时进行研究,这在研究中很重要,因为这些研究表明,随着年龄的增长,抗氧化信号会减弱,特别是对外源刺激的反应。在这项工作中,我们研究了衰老是否会影响年轻 Gclm 缺失小鼠中观察到的增加抗氧化活性和改善葡萄糖稳态的有利表型。我们提供的数据表明,在基础条件下和在镉暴露(2mg/kg,通过腹腔内注射一次给药)下,以前在年轻 (<6 个月) Gclm 缺失小鼠中描述的表型在老年(24+个月)中持续存在。我们还提供了证据表明,Nrf2、AMPK 和 PPARγ 途径的转录激活是以前在年轻 Gclm 缺失小鼠中观察到的有利代谢表型的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/ea46d78a895e/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/ece8308d8960/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/96e68c10c649/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/a14610001c41/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/452b708fab39/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/848179c2dfa0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/c5b9ee1e098c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/9166ecfa6186/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/e19dd9d8c44b/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/ea46d78a895e/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/ece8308d8960/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/96e68c10c649/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/a14610001c41/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/452b708fab39/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/848179c2dfa0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/c5b9ee1e098c/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/9166ecfa6186/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/e19dd9d8c44b/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/8715110/ea46d78a895e/gr8.jpg

相似文献

[1]
Persistence of improved glucose homeostasis in Gclm null mice with age and cadmium treatment.

Redox Biol. 2022-2

[2]
Modulating GSH synthesis using glutamate cysteine ligase transgenic and gene-targeted mice.

Drug Metab Rev. 2008

[3]
Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response.

J Biol Chem. 2002-12-20

[4]
Impaired synthesis and antioxidant defense of glutathione in the cerebellum of autistic subjects: alterations in the activities and protein expression of glutathione-related enzymes.

Free Radic Biol Med. 2013-7-26

[5]
Glutathione (GSH) and the GSH synthesis gene Gclm modulate vascular reactivity in mice.

Free Radic Biol Med. 2012-7-21

[6]
Glutamate Cysteine Ligase Modifier Subunit (Gclm) Null Mice Have Increased Ovarian Oxidative Stress and Accelerated Age-Related Ovarian Failure.

Endocrinology. 2015-9

[7]
Glutathione-deficient mice are susceptible to TCDD-Induced hepatocellular toxicity but resistant to steatosis.

Chem Res Toxicol. 2011-12-6

[8]
Glutamate cysteine ligase (GCL) transgenic and gene-targeted mice for controlling glutathione synthesis.

Curr Protoc Toxicol. 2009-2

[9]
Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous.

Biochem Biophys Res Commun. 2000-12-20

[10]
Glutamate cysteine ligase catalysis: dependence on ATP and modifier subunit for regulation of tissue glutathione levels.

J Biol Chem. 2005-10-7

引用本文的文献

[1]
Targeting DDX3X suppresses progression of KRAS-driven lung cancer by disrupting antioxidative homeostasis and inducing ferroptosis.

Cell Death Dis. 2025-8-30

[2]
Chain splitting of insulin: an underlying mechanism of insulin resistance?

NPJ Metab Health Dis. 2024-12-18

[3]
Constructing a Novel Amino Acid Metabolism Signature: A New Perspective on Pheochromocytoma Diagnosis, Immune Landscape, and Immunotherapy.

Biochem Genet. 2025-2

[4]
The role of ferroptosis in cardio-oncology.

Arch Toxicol. 2024-3

[5]
The Role of Astrocytic Mitochondria in the Pathogenesis of Brain Ischemia.

Mol Neurobiol. 2024-4

[6]
REST contributes to AKI-to-CKD transition through inducing ferroptosis in renal tubular epithelial cells.

JCI Insight. 2023-6-8

[7]
Perilipin 5 regulates hepatic stellate cell activation and high-fat diet-induced non-alcoholic fatty liver disease.

Animal Model Exp Med. 2024-4

[8]
Antioxidant Therapy in Cancer: Rationale and Progress.

Antioxidants (Basel). 2022-6-8

本文引用的文献

[1]
Non-canonical NRF2 activation promotes a pro-diabetic shift in hepatic glucose metabolism.

Mol Metab. 2021-9

[2]
Roles of oxidative stress, apoptosis, and inflammation in metal-induced dysfunction of beta pancreatic cells isolated from CD1 mice.

Saudi J Biol Sci. 2021-1

[3]
Methionine sulfoxide reductase B3 deficiency inhibits the development of diet-induced insulin resistance in mice.

Redox Biol. 2021-1

[4]
CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPKα2-SIRT1-PPARα signaling pathway.

J Biol Chem. 2020-12-11

[5]
Cadmium exposure, fasting blood glucose changes, and type 2 diabetes mellitus: A longitudinal prospective study in China.

Environ Res. 2021-1

[6]
SQSTM1/p62 activates NFE2L2/NRF2 via ULK1-mediated autophagic KEAP1 degradation and protects mouse liver from lipotoxicity.

Autophagy. 2020-11

[7]
Cadmium Induces Acute Liver Injury by Inhibiting Nrf2 and the Role of NF-κB, NLRP3, and MAPKs Signaling Pathway.

Int J Environ Res Public Health. 2019-12-24

[8]
Glutathione deficiency-elicited reprogramming of hepatic metabolism protects against alcohol-induced steatosis.

Free Radic Biol Med. 2019-11-1

[9]
Decreased Insulin Secretion but Unchanged Glucose Homeostasis in Cadmium-Exposed Male C57BL/6 Mice.

J Toxicol. 2019-6-20

[10]
Hepatic lipid homeostasis by peroxisome proliferator-activated receptor gamma 2.

Liver Res. 2018-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索