文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过丁酸介导抑制破骨细胞活性来研究嗜酸乳杆菌缓解绝经后骨质疏松症的作用机制。

Mechanistic study on the alleviation of postmenopausal osteoporosis by Lactobacillus acidophilus through butyrate-mediated inhibition of osteoclast activity.

机构信息

The First Affiliated Hospital of Kunming Medical University, Kunming, China.

出版信息

Sci Rep. 2024 Mar 25;14(1):7042. doi: 10.1038/s41598-024-57122-x.


DOI:10.1038/s41598-024-57122-x
PMID:38528074
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10963762/
Abstract

In China, traditional medications for osteoporosis have significant side effects, low compliance, and high costs, making it urgent to explore new treatment options. Probiotics have demonstrated superiority in the treatment of various chronic diseases, and the reduction of bone mass in postmenopausal osteoporosis (PMOP) is closely related to the degradation and metabolism of intestinal probiotics. It is crucial to explore the role and molecular mechanisms of probiotics in alleviating PMOP through their metabolites, as well as their therapeutic effects. We aim to identify key probiotics and their metabolites that affect bone loss in PMOP through 16srDNA sequencing combined with non-targeted metabolomics sequencing, and explore the impact and possible mechanisms of key probiotics and their metabolites on the progression of PMOP in the context of osteoporosis caused by estrogen deficiency. The sequencing results showed a significant decrease in Lactobacillus acidophilus and butyrate in PMOP patients. In vivo experiments confirmed that the intervention of L. acidophilus and butyrate significantly inhibited osteoclast formation and bone resorption activity, improved intestinal barrier permeability, suppressed B cells, and the production of RANKL on B cells, effectively reduced systemic bone loss induced by oophorectomy, with butyric acid levels regulated by L. acidophilus. Consistently, in vitro experiments have confirmed that butyrate can directly inhibit the formation of osteoclasts and bone resorption activity. The above research results indicate that there are various pathways through which L. acidophilus inhibits osteoclast formation and bone resorption activity through butyrate. Intervention with L. acidophilus may be a safe and promising treatment strategy for osteoclast related bone diseases, such as PMOP.

摘要

在中国,传统的骨质疏松症药物存在明显的副作用、低顺应性和高成本,因此迫切需要探索新的治疗选择。益生菌在治疗各种慢性疾病方面具有优势,绝经后骨质疏松症(PMOP)的骨量减少与肠道益生菌的降解和代谢密切相关。通过其代谢物探索益生菌在缓解 PMOP 中的作用和分子机制,以及它们的治疗效果,是至关重要的。我们旨在通过 16srDNA 测序结合非靶向代谢组学测序,确定影响 PMOP 骨丢失的关键益生菌及其代谢物,并探讨关键益生菌及其代谢物在雌激素缺乏引起的骨质疏松症背景下对 PMOP 进展的影响及其可能机制。测序结果显示,PMOP 患者的嗜酸乳杆菌和丁酸显著减少。体内实验证实,嗜酸乳杆菌和丁酸的干预显著抑制破骨细胞的形成和骨吸收活性,改善肠道屏障通透性,抑制 B 细胞和 B 细胞上 RANKL 的产生,有效减少卵巢切除引起的全身骨丢失,且由嗜酸乳杆菌调节丁酸水平。同样,体外实验证实,丁酸可以直接抑制破骨细胞的形成和骨吸收活性。上述研究结果表明,嗜酸乳杆菌通过丁酸抑制破骨细胞形成和骨吸收活性的途径多种多样。干预嗜酸乳杆菌可能是治疗与破骨细胞相关的骨疾病(如 PMOP)的一种安全且有前景的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/9b500290fade/41598_2024_57122_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/d9f1f6f6dc21/41598_2024_57122_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/1d9e12f8e521/41598_2024_57122_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/e10d16be2bb8/41598_2024_57122_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/c7c896d84cb6/41598_2024_57122_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/12535dc34348/41598_2024_57122_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/9b500290fade/41598_2024_57122_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/d9f1f6f6dc21/41598_2024_57122_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/1d9e12f8e521/41598_2024_57122_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/e10d16be2bb8/41598_2024_57122_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/c7c896d84cb6/41598_2024_57122_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/12535dc34348/41598_2024_57122_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b29/10963762/9b500290fade/41598_2024_57122_Fig6_HTML.jpg

相似文献

[1]
Mechanistic study on the alleviation of postmenopausal osteoporosis by Lactobacillus acidophilus through butyrate-mediated inhibition of osteoclast activity.

Sci Rep. 2024-3-25

[2]
miR-128 plays a critical role in murine osteoclastogenesis and estrogen deficiency-induced bone loss.

Theranostics. 2020

[3]
HDAC inhibitor quisinostat prevents estrogen deficiency-induced bone loss by suppressing bone resorption and promoting bone formation in mice.

Eur J Pharmacol. 2022-7-15

[4]
Piperlongumine, a -derived amide alkaloid, protects mice from ovariectomy-induced osteoporosis by inhibiting osteoclastogenesis suppression of p38 and JNK signaling.

Food Funct. 2024-2-19

[5]
Anti-perimenopausal osteoporosis effects of Erzhi formula via regulation of bone resorption through osteoclast differentiation: A network pharmacology-integrated experimental study.

J Ethnopharmacol. 2021-4-24

[6]
Catalpol attenuates osteoporosis in ovariectomized rats through promoting osteoclast apoptosis via the Sirt6-ERα-FasL axis.

Phytomedicine. 2024-1

[7]
Line inhibits osteoclast differentiation and suppresses bone mineral density reduction in the ovariectomy‑induced osteoporosis model.

Mol Med Rep. 2021-8

[8]
Bindarit Reduces Bone Loss in Ovariectomized Mice by Inhibiting CCL2 and CCL7 Expression via the NF-κB Signaling Pathway.

Orthop Surg. 2022-6

[9]
Anethole inhibits RANKL-induced osteoclastogenesis by downregulating ERK/AKT signaling and prevents ovariectomy-induced bone loss in vivo.

Int Immunopharmacol. 2021-11

[10]
plantarum GKM3 and Lactobacillus paracasei GKS6 Supplementation Ameliorates Bone Loss in Ovariectomized Mice by Promoting Osteoblast Differentiation and Inhibiting Osteoclast Formation.

Nutrients. 2020-6-28

引用本文的文献

[1]
The novel organoselenium compound 4aa ameliorates osteoporosis by modulating gut microbiota composition and fecal metabolite profiles.

Front Endocrinol (Lausanne). 2025-8-13

[2]
Gut microbiota changes in postmenopausal women with low bone density linked to serum amino acid metabolism.

Front Cell Infect Microbiol. 2025-7-9

[3]
Effects of different environmental stresses on cell surface hydrophobicity of lactobacilli, bifidobacteria and propionibacteria.

BMC Microbiol. 2025-7-4

[4]
Progress of research on the gut microbiome and its metabolite short-chain fatty acids in postmenopausal osteoporosis: a literature review.

Front Med. 2025-5-10

[5]
Probiotics and nanoparticle-mediated nutrient delivery in the management of transfusion-supported diseases.

Front Cell Infect Microbiol. 2025-4-11

[6]
Potential of Kefir-Derived Peptides, Probiotics, and Exopolysaccharides for Osteoporosis Management.

Curr Osteoporos Rep. 2025-4-7

[7]
Gut microbiome and bone health: update on mechanisms, clinical correlations, and possible treatment strategies.

Osteoporos Int. 2025-2

[8]
Gut microbiota, plasma metabolites, and osteoporosis: unraveling links via Mendelian randomization.

Front Microbiol. 2024-7-15

[9]
Microbiota and Resveratrol: How Are They Linked to Osteoporosis?

Cells. 2024-7-3

本文引用的文献

[1]
Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota.

Nutrients. 2023-5-6

[2]
Regulation of short-chain fatty acids in the immune system.

Front Immunol. 2023

[3]
Effect of Bifidobacterium on osteoclasts: TNF-α/NF-κB inflammatory signal pathway-mediated mechanism.

Front Endocrinol (Lausanne). 2023

[4]
Co-Cultures of and Enhance Mucosal Barrier by Modulating Gut Microbiota-Derived Short-Chain Fatty Acids.

Nutrients. 2022-10-25

[5]
Gut microbiome and human health: Exploring how the probiotic genus modulate immune responses.

Front Pharmacol. 2022-10-24

[6]
Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function.

J Orthop Translat. 2022-9-26

[7]
Gut microbiota modulates osteoclast glutathione synthesis and mitochondrial biogenesis in mice subjected to ovariectomy.

Cell Prolif. 2022-3

[8]
Butyrate Inhibits Osteoclast Activity and Regulates Systemic Inflammation and Bone Healing in a Murine Osteotomy Model Compared to Antibiotic-Treated Mice.

Mediators Inflamm. 2021

[9]
The Human Gut Microbiota: A Key Mediator of Osteoporosis and Osteogenesis.

Int J Mol Sci. 2021-8-31

[10]
Regulatory B Cells (Bregs) Inhibit Osteoclastogenesis and Play a Potential Role in Ameliorating Ovariectomy-Induced Bone Loss.

Front Immunol. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索