Department of Psychology, Université du Québec à Montréal, Succursale Centre-Ville, C.P. 8888, Montréal, Québec, H3C 3P8, Canada.
Independent Researcher, Ramat Gan, Israel.
Behav Res Methods. 2024 Apr;56(4):4162-4172. doi: 10.3758/s13428-024-02356-w. Epub 2024 Mar 25.
Beyond the challenge of keeping up to date with current best practices regarding the diagnosis and treatment of outliers, an additional difficulty arises concerning the mathematical implementation of the recommended methods. Here, we provide an overview of current recommendations and best practices and demonstrate how they can easily and conveniently be implemented in the R statistical computing software, using the {performance} package of the easystats ecosystem. We cover univariate, multivariate, and model-based statistical outlier detection methods, their recommended threshold, standard output, and plotting methods. We conclude by reviewing the different theoretical types of outliers, whether to exclude or winsorize them, and the importance of transparency. A preprint of this paper is available at: 10.31234/osf.io/bu6nt.
除了跟上有关异常值的诊断和治疗的最新最佳实践的挑战之外,在推荐方法的数学实施方面还会出现另外一个困难。在这里,我们提供了当前建议和最佳实践的概述,并展示了如何在 R 统计计算软件中轻松方便地实现它们,使用 easystats 生态系统中的{performance}包。我们涵盖了单变量、多变量和基于模型的统计异常值检测方法、它们的推荐阈值、标准输出和绘图方法。最后,我们回顾了不同类型的理论异常值,是排除还是进行 winsorization 处理,以及透明度的重要性。本文的预印本可在以下网址获得:10.31234/osf.io/bu6nt。