Halaksa Roman, Kim Ji Hwan, Thorley Karl J, Gilhooly-Finn Peter A, Ahn Hyungju, Savva Achilleas, Yoon Myung-Han, Nielsen Christian B
Department of Chemistry Queen Mary University of London Mile End Road London E1 4NS UK.
School of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea.
Angew Chem Weinheim Bergstr Ger. 2023 Jul 17;135(29):e202304390. doi: 10.1002/ange.202304390. Epub 2023 Jun 12.
Thiophenes functionalised in the 3-position are ubiquitous building blocks for the design and synthesis of organic semiconductors. Their non-centrosymmetric nature has long been used as a powerful synthetic design tool exemplified by the vastly different properties of regiorandom and regioregular poly(3-hexylthiophene) owing to the repulsive head-to-head interactions between neighbouring side chains in the regiorandom polymer. The renewed interest in highly electron-rich 3-alkoxythiophene based polymers for bioelectronic applications opens up new considerations around the regiochemistry of these systems as both the head-to-tail and head-to-head couplings adopt near-planar conformations due to attractive intramolecular S-O interactions. To understand how this increased flexibility in the molecular design can be used advantageously, we explore in detail the geometrical and electronic effects that influence the optical, electrochemical, structural, and electrical properties of a series of six polythiophene derivatives with varying regiochemistry and comonomer composition. We show how the interplay between conformational disorder, backbone coplanarity and polaron distribution affects the mixed ionic-electronic conduction. Ultimately, we use these findings to identify a new conformationally restricted polythiophene derivative for p-type accumulation-mode organic electrochemical transistor applications with performance on par with state-of-the-art mixed conductors evidenced by a * product of 267 F V cm s.
3位官能化的噻吩是用于有机半导体设计与合成的普遍存在的结构单元。它们的非中心对称性质长期以来一直被用作一种强大的合成设计工具,例如无规和区域规整的聚(3-己基噻吩)由于无规聚合物中相邻侧链之间的排斥性头对头相互作用而具有截然不同的性质。对用于生物电子应用的高度富电子的基于3-烷氧基噻吩的聚合物的重新关注引发了围绕这些体系区域化学的新思考,因为由于有吸引力的分子内S-O相互作用,头对尾和头对头偶联均采用近平面构象。为了理解如何有利地利用分子设计中这种增加的灵活性,我们详细研究了影响一系列六种具有不同区域化学和共聚单体组成的聚噻吩衍生物的光学、电化学、结构和电学性质的几何和电子效应。我们展示了构象无序、主链共面性和极化子分布之间的相互作用如何影响混合离子-电子传导。最终,我们利用这些发现确定了一种用于p型积累模式有机电化学晶体管应用的新型构象受限聚噻吩衍生物,其性能与由267 F V cm s的*乘积证明的最先进混合导体相当。