Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
Front Immunol. 2024 Mar 11;15:1360342. doi: 10.3389/fimmu.2024.1360342. eCollection 2024.
Human Immunodeficiency Virus Type 1 (HIV-1) presents significant challenges to the immune system, predominantly characterized by CD4 T cell depletion, leading to Acquired Immunodeficiency Syndrome (AIDS). Antiretroviral therapy (ART) effectively suppresses the viral load in people with HIV (PWH), leading to a state of chronic infection that is associated with inflammation. This review explores the complex relationship between oxidative phosphorylation, a crucial metabolic pathway for cellular energy production, and HIV-1, emphasizing the dual impact of HIV-1 infection and the metabolic and mitochondrial effects of ART. The review highlights how HIV-1 infection disrupts oxidative phosphorylation, promoting glycolysis and fatty acid synthesis to facilitate viral replication. ART can exacerbate metabolic dysregulation despite controlling viral replication, impacting mitochondrial DNA synthesis and enhancing reactive oxygen species production. These effects collectively contribute to significant changes in oxidative phosphorylation, influencing immune cell metabolism and function. Adenosine triphosphate (ATP) generated through oxidative phosphorylation can influence the metabolic landscape of infected cells through ATP-detected purinergic signaling and contributes to immunometabolic dysfunction. Future research should focus on identifying specific targets within this pathway and exploring the role of purinergic signaling in HIV-1 pathogenesis to enhance HIV-1 treatment modalities, addressing both viral infection and its metabolic consequences.
人类免疫缺陷病毒 1 型(HIV-1)对免疫系统构成重大挑战,主要表现为 CD4 T 细胞耗竭,导致获得性免疫缺陷综合征(AIDS)。抗逆转录病毒疗法(ART)可有效抑制 HIV 感染者(PWH)的病毒载量,导致慢性感染状态,并伴有炎症。本综述探讨了氧化磷酸化与 HIV-1 之间的复杂关系,氧化磷酸化是细胞能量产生的关键代谢途径,强调了 HIV-1 感染以及 ART 的代谢和线粒体效应的双重影响。该综述强调了 HIV-1 感染如何破坏氧化磷酸化,促进糖酵解和脂肪酸合成以促进病毒复制。尽管控制了病毒复制,ART 仍会加剧代谢失调,影响线粒体 DNA 合成并增强活性氧的产生。这些影响共同导致氧化磷酸化的显著变化,影响免疫细胞的代谢和功能。通过 ATP 检测嘌呤能信号,通过氧化磷酸化产生的三磷酸腺苷(ATP)可影响感染细胞的代谢景观,并导致免疫代谢功能障碍。未来的研究应集中于鉴定该途径中的特定靶标,并探索嘌呤能信号在 HIV-1 发病机制中的作用,以增强 HIV-1 的治疗方式,同时解决病毒感染及其代谢后果。