Suppr超能文献

日本医疗质量理事会公共数据库中镇静事故记录的分析

Analysis of Sedation Accident Records Available in the Japan Council for Quality Health Care Public Database.

作者信息

Imaizumi Uno, Kuroda Hidetaka, Tsukimoto Shota, Katagiri Norika, Sanuki Takuro

机构信息

Department of Dental Anesthesiology, Kanagawa Dental University, Yokosuka, JPN.

出版信息

Cureus. 2024 Feb 23;16(2):e54793. doi: 10.7759/cureus.54793. eCollection 2024 Feb.

Abstract

OBJECTIVE

Medical accidents occur frequently. However, only a few studies have been conducted on sedation-related medical accidents. This study aimed to classify sedation accidents and analyze their causes using the (Patient-management Software Hardware Environment Livewear (P-mSHELL) model.

METHODS

The Japan Council for Quality Health Care database on medical accidents was used. Sedation accidents that occurred during procedures between January 2010 and June 2022 were included. After examining the accident details for several variables, the accident factors were classified by factors in the P-mSHELL model, and statistical analyses, including multivariate analysis of each factor and outcome (presence or absence of residual disability), were conducted.

RESULTS

Regarding the influence of the P-mSHELL factors on outcome, P factor (odds ratio = 6.347, 95% confidence interval = 2.000, 20.144) was a factor for having disability. There was a significant association between outcome and accident timing (that is, preoperative, intraoperative, or postoperative; =0.01). No significant association was found between the outcomes and types of drugs used ( =1, 0.722, 0.594); however, there was a significant association between the incidence of respiratory depression and multiple drug use ( <0.001).

CONCLUSIONS

To prevent sedation accidents, it is important to monitor patients throughout the perioperative period. However, it is especially important to know the patient's condition in advance, and strict postoperative management is essential, especially for high-risk patients, to prevent serious accidents.

摘要

目的

医疗事故频繁发生。然而,关于镇静相关医疗事故的研究却很少。本研究旨在使用(患者管理软件硬件环境活体监测(P-mSHELL)模型)对镇静事故进行分类并分析其原因。

方法

使用日本医疗质量保健委员会的医疗事故数据库。纳入2010年1月至2022年6月期间手术过程中发生的镇静事故。在检查事故细节中的几个变量后,根据P-mSHELL模型中的因素对事故因素进行分类,并进行统计分析,包括对每个因素和结果(是否存在残留残疾)的多变量分析。

结果

关于P-mSHELL因素对结果的影响,P因素(比值比 = 6.347,95%置信区间 = 2.000,20.144)是导致残疾的一个因素。结果与事故发生时间(即术前、术中或术后;P = 0.01)之间存在显著关联。在结果与所用药物类型之间未发现显著关联(P = 1,0.722,0.594);然而,呼吸抑制的发生率与多种药物联合使用之间存在显著关联(P < 0.001)。

结论

为预防镇静事故,在围手术期对患者进行全程监测很重要。然而,提前了解患者情况尤为重要,并且严格的术后管理对于预防严重事故至关重要,尤其是对于高危患者。

相似文献

本文引用的文献

1
Practical guide for safe sedation.实用镇静指南。
J Anesth. 2023 Jun;37(3):340-356. doi: 10.1007/s00540-023-03177-5. Epub 2023 Mar 13.
9
The problem with checklists.检查表的问题。
BMJ Qual Saf. 2015 Sep;24(9):545-9. doi: 10.1136/bmjqs-2015-004431. Epub 2015 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验