Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.
Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA.
mBio. 2024 May 8;15(5):e0034824. doi: 10.1128/mbio.00348-24. Epub 2024 Mar 26.
A critical determinant for early post-entry events, the HIV-1 capsid (CA) protein forms the conical core when it rearranges around the dimeric RNA genome and associated viral proteins. Although mutations in CA have been reported to alter innate immune sensing of HIV-1, a direct link between core stability and sensing of HIV-1 nucleic acids has not been established. Herein, we assessed how manipulating the stability of the CA lattice through chemical and genetic approaches affects innate immune recognition of HIV-1. We found that destabilization of the CA lattice resulted in potent sensing of reverse transcription products when destabilization does not completely block reverse transcription. Surprisingly, due to the combined effects of enhanced reverse transcription and defects in nuclear entry, two separate CA mutants that form hyperstable cores induced innate immune sensing more potently than destabilizing CA mutations. At low concentrations that allowed the accumulation of reverse transcription products, CA-targeting compounds GS-CA1 and lenacapavir measurably impacted CA lattice stability in cells and modestly enhanced innate immune sensing of HIV. Interestingly, innate immune activation observed with viruses containing unstable cores was abolished by low doses of lenacapavir. Innate immune activation observed with both hyperstable and unstable CA mutants was dependent on the cGAS-STING DNA-sensing pathway and reverse transcription. Overall, our findings demonstrate that CA lattice stability and reverse transcription are finely balanced to support reverse transcription and minimize cGAS-STING-mediated sensing of the resulting viral DNA.
In HIV-1 particles, the dimeric RNA genome and associated viral proteins and enzymes are encased in a proteinaceous lattice composed of the viral capsid protein. Herein, we assessed how altering the stability of this capsid lattice through orthogonal genetic and chemical approaches impacts the induction of innate immune responses. Specifically, we found that decreasing capsid lattice stability results in more potent sensing of viral reverse transcription products, but not the genomic RNA, in a cGAS-STING-dependent manner. The recently developed capsid inhibitors lenacapavir and GS-CA1 enhanced the innate immune sensing of HIV-1. Unexpectedly, due to increased levels of reverse transcription and cytosolic accumulation of the resulting viral cDNA, capsid mutants with hyperstable cores also resulted in the potent induction of type I interferon-mediated innate immunity. Our findings suggest that HIV-1 capsid lattice stability and reverse transcription are finely balanced to minimize exposure of reverse transcription products in the cytosol of host cells.
对于早期进入后事件的关键决定因素,HIV-1 衣壳 (CA) 蛋白在围绕二聚体 RNA 基因组和相关病毒蛋白重新排列时形成锥形核心。尽管已经报道 CA 中的突变会改变 HIV-1 的先天免疫感应,但核心稳定性与 HIV-1 核酸感应之间的直接联系尚未建立。在此,我们评估了通过化学和遗传方法改变 CA 晶格的稳定性如何影响 HIV-1 的先天免疫识别。我们发现,通过化学和遗传方法改变 CA 晶格的稳定性会导致逆转录产物的强烈感应,而不会完全阻止逆转录。令人惊讶的是,由于逆转录增强和核进入缺陷的综合影响,形成超稳定核心的两种分离的 CA 突变体比破坏 CA 突变体更强烈地诱导先天免疫感应。在允许逆转录产物积累的低浓度下,CA 靶向化合物 GS-CA1 和 lenacapavir 在细胞中显著影响 CA 晶格稳定性,并适度增强 HIV 的先天免疫感应。有趣的是,低剂量的 lenacapavir 可消除含有不稳定核心的病毒引起的先天免疫激活。用不稳定核心的病毒和超稳定 CA 突变体观察到的先天免疫激活都依赖于 cGAS-STING DNA 感应途径和逆转录。总体而言,我们的研究结果表明,CA 晶格稳定性和逆转录是平衡的,以支持逆转录并最大限度地减少由此产生的病毒 DNA 的 cGAS-STING 介导的感应。
在 HIV-1 颗粒中,二聚体 RNA 基因组和相关病毒蛋白和酶被包裹在由病毒衣壳蛋白组成的蛋白质晶格中。在此,我们通过正交遗传和化学方法评估了改变这种衣壳晶格稳定性如何影响先天免疫反应的诱导。具体来说,我们发现降低衣壳晶格稳定性会导致更强烈地感应病毒逆转录产物,但不以 cGAS-STING 依赖的方式感应基因组 RNA。最近开发的衣壳抑制剂 lenacapavir 和 GS-CA1 增强了 HIV-1 的先天免疫感应。出乎意料的是,由于逆转录水平增加和由此产生的病毒 cDNA 在细胞质中的积累,具有超稳定核心的衣壳突变体也导致了 I 型干扰素介导的先天免疫的强烈诱导。我们的研究结果表明,HIV-1 衣壳晶格稳定性和逆转录是平衡的,以最大限度地减少宿主细胞细胞质中逆转录产物的暴露。