Nencki Institute of Experimental Biology, Polish Academy of Sciences , Warsaw, Poland.
Centre of New Technologies, University of Warsaw , Warsaw, Poland.
J Cell Biol. 2024 May 6;223(5). doi: 10.1083/jcb.202306051. Epub 2024 Mar 26.
Most mitochondrial proteins originate from the cytosol and require transport into the organelle. Such precursor proteins must be unfolded to pass through translocation channels in mitochondrial membranes. Misfolding of transported proteins can result in their arrest and translocation failure. Arrested proteins block further import, disturbing mitochondrial functions and cellular proteostasis. Cellular responses to translocation failure have been defined in yeast. We developed the cell line-based translocase clogging model to discover molecular mechanisms that resolve failed import events in humans. The mechanism we uncover differs significantly from these described in fungi, where ATPase-driven extraction of blocked protein is directly coupled with proteasomal processing. We found human cells to rely primarily on mitochondrial factors to clear translocation channel blockage. The mitochondrial membrane depolarization triggered proteolytic cleavage of the stalled protein, which involved mitochondrial protease OMA1. The cleavage allowed releasing the protein fragment that blocked the translocase. The released fragment was further cleared in the cytosol by VCP/p97 and the proteasome.
大多数线粒体蛋白来源于细胞质,需要运输到细胞器中。这种前体蛋白必须解折叠才能通过线粒体膜中的转运通道。转运蛋白的错误折叠会导致它们的截留和转运失败。截留的蛋白质会阻止进一步的导入,扰乱线粒体功能和细胞蛋白平衡。酵母中已经定义了细胞对转运失败的反应。我们开发了基于细胞系的易位酶堵塞模型,以发现解决人类导入失败事件的分子机制。我们发现的机制与真菌中描述的机制有很大的不同,在真菌中,被阻塞的蛋白质的 ATP 酶驱动提取与蛋白酶体处理直接偶联。我们发现人类细胞主要依赖于线粒体因子来清除转运通道堵塞。线粒体去极化触发了停滞蛋白的蛋白水解切割,其中涉及线粒体蛋白酶 OMA1。切割允许释放阻塞易位酶的蛋白质片段。释放的片段进一步通过 VCP/p97 和蛋白酶体在细胞质中清除。