Suppr超能文献

用于长尾图像分类的实例特定语义增强

Instance-Specific Semantic Augmentation for Long-Tailed Image Classification.

作者信息

Chen Jiahao, Su Bing

出版信息

IEEE Trans Image Process. 2024;33:2544-2557. doi: 10.1109/TIP.2024.3379929. Epub 2024 Apr 1.

Abstract

Recent long-tailed classification methods generally adopt the two-stage pipeline and focus on learning the classifier to tackle the imbalanced data in the second stage via re-sampling or re-weighting, but the classifier is easily prone to overconfidence in head classes. Data augmentation is a natural way to tackle this issue. Existing augmentation methods either perform low-level transformations or apply the same semantic transformation for all instances. However, meaningful augmentations for different instances should be different. In this paper, we propose feature-level augmentation (FLA) and pixel-level augmentation (PLA) learning methods for long-tailed image classification. In the first stage, the feature space is learned from the original imbalanced data. In the second stage, we model the semantic within-class transformation range for each instance by a specific Gaussian distribution and design a semantic transformation generator (STG) to predict the distribution from the instance itself. We train STG by constructing ground-truth distributions for instances of head classes in the feature space. In the third stage, for FLA, we generate instance-specific transformations by STG to obtain feature augmentations of tail classes for fine-tuning the classifier. For PLA, we use STG to guide pixel-level augmentations for fine-tuning the backbone. The proposed augmentation strategy can be combined with different existing long-tail classification methods. Extensive experiments on five imbalanced datasets show the effectiveness of our method.

摘要

近期的长尾分类方法通常采用两阶段流程,并专注于学习分类器,以便在第二阶段通过重采样或重新加权来处理不平衡数据,但分类器很容易对头部类别过度自信。数据增强是解决此问题的自然方法。现有的增强方法要么执行低级变换,要么对所有实例应用相同的语义变换。然而,针对不同实例的有意义的增强应该是不同的。在本文中,我们提出了用于长尾图像分类的特征级增强(FLA)和像素级增强(PLA)学习方法。在第一阶段,从原始不平衡数据中学习特征空间。在第二阶段,我们通过特定的高斯分布对每个实例的语义类内变换范围进行建模,并设计一个语义变换生成器(STG),以从实例本身预测该分布。我们通过为特征空间中头部类别的实例构建真实分布来训练STG。在第三阶段,对于FLA,我们通过STG生成特定于实例的变换,以获得尾部类别的特征增强,从而对分类器进行微调。对于PLA,我们使用STG来指导像素级增强,以对主干进行微调。所提出的增强策略可以与不同的现有长尾分类方法相结合。在五个不平衡数据集上进行的大量实验表明了我们方法的有效性。

相似文献

1
Instance-Specific Semantic Augmentation for Long-Tailed Image Classification.用于长尾图像分类的实例特定语义增强
IEEE Trans Image Process. 2024;33:2544-2557. doi: 10.1109/TIP.2024.3379929. Epub 2024 Apr 1.
4
Label-Aware Distribution Calibration for Long-Tailed Classification.用于长尾分类的标签感知分布校准
IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6963-6975. doi: 10.1109/TNNLS.2022.3213522. Epub 2024 May 2.
5
Enhanced Long-Tailed Recognition With Contrastive CutMix Augmentation.基于对比CutMix增强的长尾识别优化
IEEE Trans Image Process. 2024;33:4215-4230. doi: 10.1109/TIP.2024.3425148. Epub 2024 Jul 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验