Suppr超能文献

用于零样本图像分类的语义引导类不平衡学习模型

Semantic-Guided Class-Imbalance Learning Model for Zero-Shot Image Classification.

作者信息

Ji Zhong, Yu Xuejie, Yu Yunlong, Pang Yanwei, Zhang Zhongfei

出版信息

IEEE Trans Cybern. 2022 Jul;52(7):6543-6554. doi: 10.1109/TCYB.2020.3004641. Epub 2022 Jul 4.

Abstract

In this article, we focus on the task of zero-shot image classification (ZSIC) that equips a learning system with the ability to recognize visual images from unseen classes. In contrast to the traditional image classification, ZSIC more easily suffers from the class-imbalance issue since it is more concerned with the class-level knowledge transferring capability. In the real world, the sample numbers of different categories generally follow a long-tailed distribution, and the discriminative information in the sample-scarce seen classes is hard to transfer to the related unseen classes in the traditional batch-based training manner, which degrades the overall generalization ability a lot. To alleviate the class-imbalance issue in ZSIC, we propose a sample-balanced training process to encourage all training classes to contribute equally to the learned model. Specifically, we randomly select the same number of images from each class across all training classes to form a training batch to ensure that the sample-scarce classes contribute equally as those classes with sufficient samples during each iteration. Considering that the instances from the same class differ in class representativeness, we further develop an efficient semantic-guided feature fusion model to obtain the discriminative class visual prototype for the following visual-semantic interaction process via distributing different weights to the selected samples based on their class representativeness. Extensive experiments on three imbalanced ZSIC benchmark datasets for both traditional ZSIC and generalized ZSIC tasks demonstrate that our approach achieves promising results, especially for the unseen categories that are closely related to the sample-scarce seen categories. Besides, the experimental results on two class-balanced datasets show that the proposed approach also improves the classification performance against the baseline model.

摘要

在本文中,我们聚焦于零样本图像分类(ZSIC)任务,该任务使学习系统具备识别来自未见类别的视觉图像的能力。与传统图像分类不同,ZSIC更容易受到类别不平衡问题的影响,因为它更关注类别级别的知识转移能力。在现实世界中,不同类别的样本数量通常遵循长尾分布,并且在传统的基于批次的训练方式下,样本稀缺的可见类中的判别信息难以转移到相关的未见类中,这大大降低了整体泛化能力。为了缓解ZSIC中的类别不平衡问题,我们提出了一种样本平衡训练过程,以鼓励所有训练类别对学习到的模型做出同等贡献。具体来说,我们从所有训练类别中的每个类别中随机选择相同数量的图像来形成一个训练批次,以确保样本稀缺的类别在每次迭代中与样本充足的类别做出同等贡献。考虑到来自同一类别的实例在类别代表性上存在差异,我们进一步开发了一种高效的语义引导特征融合模型,通过根据所选样本的类别代表性分配不同权重,为后续的视觉语义交互过程获得判别性的类别视觉原型。在三个不平衡的ZSIC基准数据集上针对传统ZSIC和广义ZSIC任务进行的大量实验表明,我们的方法取得了有希望的结果,特别是对于与样本稀缺的可见类别密切相关的未见类别。此外,在两个类别平衡数据集上的实验结果表明,所提出的方法相对于基线模型也提高了分类性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验