Asakura Mihiro, Higo Tomoya, Matsuo Takumi, Uesugi Ryota, Nishio-Hamane Daisuke, Nakatsuji Satoru
Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.
Adv Mater. 2024 Jul;36(27):e2400301. doi: 10.1002/adma.202400301. Epub 2024 Apr 26.
Due to promising functionalities that may dramatically enhance spintronics performance, antiferromagnets are the subject of intensive research for developing the next-generation active elements to replace ferromagnets. In particular, the recent experimental demonstration of tunneling magnetoresistance and electrical switching using chiral antiferromagnets has sparked expectations for the practical integration of antiferromagnetic materials into device architectures. To further develop the technology to manipulate the magnetic anisotropies in all-antiferromagnetic devices, it is essential to realize exchange bias through the interface between antiferromagnetic multilayers. Here, the first observation on the omnidirectional exchange bias at an all-antiferromagnetic polycrystalline heterointerface is reported. This experiment demonstrates that the interfacial energy causing the exchange bias between the chiral-antiferromagnet MnSn/collinear-antiferromagnet MnN layers is comparable to those found at the conventional ferromagnet/antiferromagnet interface at room temperature. In sharp contrast with previous reports using ferromagnets, the magnetic field control of the unidirectional anisotropy is found to be omnidirectional due to the absence of the shape anisotropy in the antiferromagnetic multilayer. The realization of the omnidirectional exchange bias at the interface between polycrystalline antiferromagnets on amorphous templates, highly compatible with existing Si-based devices, paves the way for developing ultra-low power and ultra-high speed memory devices based on antiferromagnets.
由于具有可能显著提升自旋电子学性能的功能,反铁磁体成为了开发下一代有源元件以替代铁磁体的深入研究对象。特别是,近期利用手性反铁磁体进行隧穿磁电阻和电开关的实验演示引发了人们对于将反铁磁材料实际集成到器件架构中的期待。为了进一步发展在全反铁磁器件中操控磁各向异性的技术,通过反铁磁多层膜之间的界面实现交换偏置至关重要。在此,报道了在全反铁磁多晶异质界面上对全向交换偏置的首次观测。该实验表明,在手性反铁磁体MnSn/共线反铁磁体MnN层之间引起交换偏置的界面能在室温下与在传统铁磁体/反铁磁体界面处发现的相当。与先前使用铁磁体的报道形成鲜明对比的是,由于反铁磁多层膜中不存在形状各向异性,单向各向异性的磁场控制被发现是全向的。在与现有基于硅的器件高度兼容的非晶模板上实现多晶反铁磁体之间界面的全向交换偏置,为开发基于反铁磁体 的超低功耗和超高速存储器件铺平了道路。