Suppr超能文献

全反铁磁隧道结中的室温磁电阻

Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction.

作者信息

Qin Peixin, Yan Han, Wang Xiaoning, Chen Hongyu, Meng Ziang, Dong Jianting, Zhu Meng, Cai Jialin, Feng Zexin, Zhou Xiaorong, Liu Li, Zhang Tianli, Zeng Zhongming, Zhang Jia, Jiang Chengbao, Liu Zhiqi

机构信息

School of Materials Science and Engineering, Beihang University, Beijing, China.

School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Nature. 2023 Jan;613(7944):485-489. doi: 10.1038/s41586-022-05461-y. Epub 2023 Jan 18.

Abstract

Antiferromagnetic spintronics is a rapidly growing field in condensed-matter physics and information technology with potential applications for high-density and ultrafast information devices. However, the practical application of these devices has been largely limited by small electrical outputs at room temperature. Here we describe a room-temperature exchange-bias effect between a collinear antiferromagnet, MnPt, and a non-collinear antiferromagnet, MnPt, which together are similar to a ferromagnet-antiferromagnet exchange-bias system. We use this exotic effect to build all-antiferromagnetic tunnel junctions with large nonvolatile room-temperature magnetoresistance values that reach a maximum of about 100%. Atomistic spin dynamics simulations reveal that uncompensated localized spins at the interface of MnPt produce the exchange bias. First-principles calculations indicate that the remarkable tunnelling magnetoresistance originates from the spin polarization of MnPt in the momentum space. All-antiferromagnetic tunnel junction devices, with nearly vanishing stray fields and strongly enhanced spin dynamics up to the terahertz level, could be important for next-generation highly integrated and ultrafast memory devices.

摘要

反铁磁自旋电子学是凝聚态物理和信息技术中一个快速发展的领域,在高密度和超快信息设备方面具有潜在应用。然而,这些设备的实际应用在很大程度上受到室温下小电输出的限制。在这里,我们描述了共线反铁磁体MnPt和非共线反铁磁体MnPt之间的室温交换偏置效应,它们共同类似于铁磁体 - 反铁磁体交换偏置系统。我们利用这种奇异效应构建了具有大的非挥发性室温磁电阻值(最高可达约100%)的全反铁磁隧道结。原子自旋动力学模拟表明,MnPt界面处未补偿的局域自旋产生了交换偏置。第一性原理计算表明,显著的隧道磁电阻源于MnPt在动量空间中的自旋极化。全反铁磁隧道结器件具有几乎消失的杂散场,并且自旋动力学在太赫兹水平上得到强烈增强,这对于下一代高度集成和超快存储器件可能很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验