Institute for Solid State Physics, University of Tokyo, Kashiwa, Japan.
CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
Nature. 2020 Apr;580(7805):608-613. doi: 10.1038/s41586-020-2211-2. Epub 2020 Apr 20.
Electrical manipulation of phenomena generated by nontrivial band topology is essential for the development of next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles. It has various exotic properties, such as a large anomalous Hall effect (AHE) and chiral anomaly, which are robust owing to the topologically protected Weyl nodes. To manipulate such phenomena, a magnetic version of Weyl semimetals would be useful for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, electrical manipulation of antiferromagnetic Weyl metals would facilitate the use of antiferromagnetic spintronics to realize high-density devices with ultrafast operation. However, electrical control of a Weyl metal has not yet been reported. Here we demonstrate the electrical switching of a topological antiferromagnetic state and its detection by the AHE at room temperature in a polycrystalline thin film of the antiferromagnetic Weyl metal MnSn, which exhibits zero-field AHE. Using bilayer devices composed of MnSn and nonmagnetic metals, we find that an electrical current density of about 10 to 10 amperes per square metre induces magnetic switching in the nonmagnetic metals, with a large change in Hall voltage. In addition, the current polarity along the bias field and the sign of the spin Hall angle of the nonmagnetic metals-positive for Pt (ref. ), close to 0 for Cu and negative for W (ref. )-determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is achieved with the same protocol as that used for ferromagnetic metals. Our results may lead to further scientific and technological advances in topological magnetism and antiferromagnetic spintronics.
利用拓扑保护开发下一代技术,对非平凡带拓扑结构所产生现象的电学操控至关重要。Weyl 半金属是一种三维无带隙系统,其低能准粒子为 Weyl 费米子。它具有各种奇异特性,例如大反常霍尔效应(AHE)和手征反常,这归因于拓扑保护的 Weyl 节点。为了操控这些现象,Weyl 半金属的磁版本将有助于控制布里渊区中 Weyl 节点的位置。此外,反铁磁 Weyl 金属的电学操控将有助于利用反铁磁 spintronics 来实现具有超快操作的高密度器件。然而,Weyl 金属的电学控制尚未得到报道。在这里,我们在反铁磁 Weyl 金属 MnSn 的多晶薄膜中展示了拓扑反铁磁态的电学开关及其室温下 AHE 的检测,该金属表现出零场 AHE。使用由 MnSn 和非磁金属组成的双层器件,我们发现约 10 至 10 安培每平方米的电流密度可诱导非磁金属中的磁性切换,霍尔电压发生很大变化。此外,电流极性沿偏置场以及非磁金属的自旋霍尔角的符号-对于 Pt(参考文献)为正,对于 Cu 接近 0,对于 W(参考文献)为负-决定了霍尔电压的符号。值得注意的是,反铁磁体中的电学开关与铁磁金属的开关协议相同。我们的结果可能会推动拓扑磁学和反铁磁 spintronics 的进一步科学和技术进步。