Suppr超能文献

阐明用于催化氢解的胶体过渡金属二硫属化物纳米片中掺杂剂的局部结构和位置效应。

Elucidating Local Structure and Positional Effect of Dopants in Colloidal Transition Metal Dichalcogenide Nanosheets for Catalytic Hydrogenolysis.

作者信息

Farrell Steven L, Khwaja Mersal, Paredes Ingrid J, Oyuela Christopher, Clarke William, Osinski Noah, Ebrahim Amani M, Paul Shlok J, Kannan Haripriya, Mo Lnås Håvard, Ma Lu, Ehrlich Steven N, Liu Xiangyu, Riedo Elisa, Rangarajan Srinivas, Frenkel Anatoly I, Sahu Ayaskanta

机构信息

Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York 11201, United States.

Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 Mar 6;128(11):4470-4482. doi: 10.1021/acs.jpcc.3c07408. eCollection 2024 Mar 21.

Abstract

Tailoring nanoscale catalysts to targeted applications is a vital component in reducing the carbon footprint of industrial processes; however, understanding and controlling the nanostructure influence on catalysts is challenging. Molybdenum disulfide (MoS), a transition metal dichalcogenide (TMD) material, is a popular example of a nonplatinum-group-metal catalyst with tunable nanoscale properties. Doping with transition metal atoms, such as cobalt, is one method of enhancing its catalytic properties. However, the location and influence of dopant atoms on catalyst behavior are poorly understood. To investigate this knowledge gap, we studied the influence of Co dopants in MoS nanosheets on catalytic hydrodesulfurization (HDS) through a well-controlled, ligand-directed, tunable colloidal doping approach. X-ray absorption spectroscopy and density functional theory calculations revealed the nonmonotonous relationship between dopant concentration, location, and activity in HDS. Catalyst activity peaked at 21% Co:Mo as Co saturates the edge sites and begins basal plane doping. While Co prefers to dope the edges over basal sites, basal Co atoms are demonstrably more catalytically active than edge Co. These findings provide insight into the hydrogenolysis behavior of doped TMDs and can be extended to other TMD materials.

摘要

将纳米级催化剂定制用于特定应用是减少工业过程碳足迹的关键组成部分;然而,理解和控制纳米结构对催化剂的影响具有挑战性。二硫化钼(MoS)作为一种过渡金属二卤化物(TMD)材料,是具有可调纳米级特性的非铂族金属催化剂的一个典型例子。用过渡金属原子(如钴)进行掺杂是增强其催化性能的一种方法。然而,人们对掺杂原子在催化剂行为上的位置和影响了解甚少。为了填补这一知识空白,我们通过一种可控的、配体导向的、可调的胶体掺杂方法,研究了MoS纳米片中Co掺杂剂对催化加氢脱硫(HDS)的影响。X射线吸收光谱和密度泛函理论计算揭示了掺杂剂浓度、位置与HDS活性之间的非单调关系。当Co使边缘位点饱和并开始基面掺杂时,催化剂活性在Co:Mo为21%时达到峰值。虽然Co更倾向于掺杂在边缘而非基面,但基面Co原子的催化活性明显高于边缘Co。这些发现为掺杂TMDs的氢解行为提供了见解,并可扩展到其他TMD材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0e3/10961832/69d94f876441/jp3c07408_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验