Suppr超能文献

通过心率变异性的日常波动,使用智能手表直观评估工作表现。

Visually assessing work performance using a smartwatch via day-to-day fluctuations in heart rate variability.

作者信息

Okawara Hiroki, Shiraishi Yasuyuki, Sato Kazuki, Nakamura Masaya, Katsumata Yoshinori

机构信息

Department Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.

Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.

出版信息

Digit Health. 2024 Mar 26;10:20552076241239240. doi: 10.1177/20552076241239240. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

To optimize workplace health promotion, a simple method for quantifying allostatic load response is needed. This study examines the feasibility of optimizing objective anxiety and presenteeism monitoring using daily smartwatch-measured ultra-short heart rate variability (HRV).

METHODS

Office workers without diagnosed disease prospectively performed 30 s HRV self-measurement each morning for two months and responded to the State-Trait Anxiety Inventory (STAI) and Work Limitation Questionnaire (WLQ). Logistic regression analysis examined daily HRV parameters in the high-trait anxiety group (HTA, STAI ≥ 40) using mean and variance HRV, age, self-reported gender, and body mass index (BMI). The ideal cutoff value enabled comparison of WLQ using the Mann-Whitney test. Heart rate variability data were collected for 279 participants (male ratio, 83.9%; age, 42 ± 10 years) who completed questionnaires and monitored HRV for 30+ days.

RESULTS

Compared to the low-trait anxiety group, HTA exhibited higher variance of the log-transformed coefficient of component variance of high-frequency component (LnccvHF) and low-frequency per HF (Lnccv L/H), in addition to differences in the means of these HRV parameters. In addition to BMI (odds ratio [OR] = 0.92,  = 0.02) and mean LnccvL/H (OR = 10.75,  < 0.01), the variance of Lnccv L/H was an independent predictor of HTA (OR = 2.39E + 8,  = 0.011). The daily Lnccv L/H dispersion group had a lower WLQ productivity loss score ( = 0.02,  = 0.17).

CONCLUSIONS

By focusing on HRV dispersion status, this simple and instantly applicable daily HRV monitoring system enables optimized quantitative monitoring of anxiety and productivity.

摘要

目的

为优化职场健康促进,需要一种简单的方法来量化应激负荷反应。本研究探讨了使用日常智能手表测量的超短心率变异性(HRV)来优化客观焦虑和出勤主义监测的可行性。

方法

未患确诊疾病的上班族连续两个月每天早晨进行30秒的HRV自我测量,并对状态-特质焦虑量表(STAI)和工作限制问卷(WLQ)进行回应。逻辑回归分析使用HRV均值和方差、年龄、自我报告的性别以及体重指数(BMI),对高特质焦虑组(HTA,STAI≥40)的每日HRV参数进行了研究。理想的临界值使得能够使用曼-惠特尼检验对WLQ进行比较。收集了279名完成问卷并监测HRV超过30天的参与者(男性比例为83.9%;年龄为42±10岁)的心率变异性数据。

结果

与低特质焦虑组相比,HTA组除了这些HRV参数的均值存在差异外,高频成分的对数转换后的成分方差系数(LnccvHF)和低频与高频之比(Lnccv L/H)的方差也更高。除了BMI(比值比[OR]=0.92,P=0.02)和平均LnccvL/H(OR=10.75,P<0.01)外,Lnccv L/H的方差是HTA的独立预测因子(OR=2.39E+8,P=0.011)。每日Lnccv L/H离散度组的WLQ生产力损失得分较低(P=0.02,r=0.17)。

结论

通过关注HRV离散度状态,这种简单且可即时应用的每日HRV监测系统能够实现对焦虑和生产力的优化定量监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fad/10964452/5b167d27d485/10.1177_20552076241239240-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验