Tong Jinhui, Jiang Qi, Zhang Fei, Kang Seok Beom, Kim Dong Hoe, Zhu Kai
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea.
ACS Energy Lett. 2020 Dec 23;6(1):232-248. doi: 10.1021/acsenergylett.0c02105. eCollection 2021 Jan 8.
Metal halide perovskite solar cells (PSCs) have become the most promising new-generation solar cell technology. To date, perovskites also represent the only polycrystalline thin-film absorber technology that has enabled >20% efficiency for wide-bandgap solar cells, making wide-bandgap PSCs uniquely positioned to enable high-efficiency and low-cost tandem solar cell technologies by coupling wide-bandgap perovskites with low-bandgap absorbers. In this Focus Review, we highlight recent research progress on developing wide-bandgap PSCs, including the key mechanisms associated with efficiency loss and instability as well as strategies for overcoming these challenges. We also discuss recent accomplishments and research trends on using wide-bandgap PSCs in perovskite-based tandem configurations, including perovskite/perovskite, perovskite/Si, perovskite/CIGS, and other emerging tandem technologies.
金属卤化物钙钛矿太阳能电池(PSCs)已成为最具前景的新一代太阳能电池技术。迄今为止,钙钛矿也是唯一一种能使宽带隙太阳能电池效率超过20%的多晶薄膜吸收体技术,这使得宽带隙PSCs通过将宽带隙钙钛矿与窄带隙吸收体耦合,在实现高效低成本串联太阳能电池技术方面具有独特的优势。在本聚焦综述中,我们重点介绍了开发宽带隙PSCs的最新研究进展,包括与效率损失和不稳定性相关的关键机制以及克服这些挑战的策略。我们还讨论了在基于钙钛矿的串联结构中使用宽带隙PSCs的最新成果和研究趋势,包括钙钛矿/钙钛矿、钙钛矿/硅、钙钛矿/铜铟镓硒以及其他新兴的串联技术。