Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA.
Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
Development. 2024 Mar 15;151(6). doi: 10.1242/dev.201757. Epub 2024 Mar 27.
How complex organs coordinate cellular morphogenetic events to achieve three-dimensional (3D) form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina, where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells (IOPCs) organize tissue pattern to support retinal integrity. Our experiments show that photoreceptor and IOPC terminal differentiation is unexpectedly interdependent, connected by an intercellular feedback mechanism that coordinates and promotes morphogenetic change across orthogonal tissue planes to ensure correct 3D retinal pattern. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
复杂的器官如何协调细胞形态发生事件以实现三维(3D)形态是发育中的一个核心问题。这个问题在晚期果蝇蛹视网膜中是唯一可行的,在那里,当细胞形成专门的细胞骨架结构来塑造上皮的顶端、基底和纵向平面时,细胞保持定型的接触。在这项研究中,我们将细胞骨架调节剂 Abelson(Abl)的细胞类型特异性遗传操作与 3D 成像相结合,以探索光感受器和细胞间色素细胞(IOPC)的不同细胞形态发生程序如何组织组织模式以支持视网膜完整性。我们的实验表明,光感受器和 IOPC 的终末分化出乎意料地相互依赖,通过细胞间反馈机制连接,协调和促进正交组织平面上的形态发生变化,以确保正确的 3D 视网膜模式。我们提出,专门的细胞分化程序的遗传调控与平面间的机械反馈相结合,赋予了空间协调,以实现稳健的 3D 组织形态发生。