Suppr超能文献

甘氨酸甜菜碱单加氧酶,一种不寻常的 Rieske 型加氧酶系统,催化嗜盐红细菌 DSM 3043 中甘氨酸甜菜碱的氧化脱甲基化。

Glycine Betaine Monooxygenase, an Unusual Rieske-Type Oxygenase System, Catalyzes the Oxidative -Demethylation of Glycine Betaine in Chromohalobacter salexigens DSM 3043.

机构信息

Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China.

Graduate School, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.

出版信息

Appl Environ Microbiol. 2018 Jun 18;84(13). doi: 10.1128/AEM.00377-18. Print 2018 Jul 1.

Abstract

Although some bacteria, including DSM 3043, can use glycine betaine (GB) as a sole source of carbon and energy, little information is available about the genes and their encoded proteins involved in the initial step of the GB degradation pathway. In the present study, the results of conserved domain analysis, construction of in-frame deletion mutants, and an functional complementation assay suggested that the open reading frames Csal_1004 and Csal_1005, designated and , respectively, may act as the terminal oxygenase and the ferredoxin reductase genes in a novel Rieske-type oxygenase system to convert GB to dimethylglycine in DSM 3043. To further verify their function, BmoA and BmoB were heterologously overexpressed in , and C nuclear magnetic resonance analysis revealed that dimethylglycine was accumulated in BL21(DE3) expressing BmoAB or BmoA. In addition, His-tagged BmoA and BmoB were individually purified to electrophoretic homogeneity and estimated to be a homotrimer and a monomer, respectively. biochemical analysis indicated that BmoB is an NADH-dependent flavin reductase with one noncovalently bound flavin adenine dinucleotide (FAD) as its prosthetic group. In the presence of BmoB, NADH, and flavin, BmoA could aerobically degrade GB to dimethylglycine with the concomitant production of formaldehyde. BmoA exhibited strict substrate specificity for GB, and its demethylation activity was stimulated by Fe Phylogenetic analysis showed that BmoA belongs to group V of the Rieske nonheme iron oxygenase (RO) family, and all the members in this group were able to use quaternary ammonium compounds as substrates. GB is widely distributed in nature. In addition to being accumulated intracellularly as a compatible solute to deal with osmotic stress, it can be utilized by many bacteria as a source of carbon and energy. However, very limited knowledge is presently available about the molecular and biochemical mechanisms for the initial step of the aerobic GB degradation pathway in bacteria. Here, we report the molecular and biochemical characterization of a novel two-component Rieske-type monooxygenase system, GB monooxygenase (BMO), which is responsible for oxidative demethylation of GB to dimethylglycine in DSM 3043. The results gained in this study extend our knowledge on the catalytic reaction of microbial GB degradation to dimethylglycine.

摘要

尽管包括 DSM 3043 在内的一些细菌可以将甘氨酸甜菜碱 (GB) 作为唯一的碳源和能源,但关于参与 GB 降解途径初始步骤的基因及其编码蛋白的信息却很少。在本研究中,保守结构域分析、框内缺失突变体的构建和功能互补测定的结果表明,开放阅读框 Csal_1004 和 Csal_1005 分别被命名为 和 ,可能分别作为末端加氧酶和铁氧还蛋白还原酶基因,在一个新型 Rieske 型加氧酶系统中,将 GB 转化为二甲基甘氨酸。为了进一步验证它们的功能,BmoA 和 BmoB 在 中异源过表达,并且 C 核磁共振分析表明,在表达 BmoAB 或 BmoA 的 BL21(DE3)中积累了二甲基甘氨酸。此外,His 标记的 BmoA 和 BmoB 分别被纯化至电泳均一性,并估计为同源三聚体和单体。 生化分析表明,BmoB 是一种 NADH 依赖性黄素还原酶,其辅基为一个非共价结合的黄素腺嘌呤二核苷酸 (FAD)。在 BmoB、NADH 和黄素存在的情况下,BmoA 可以有氧降解 GB 生成二甲基甘氨酸,同时生成甲醛。BmoA 对 GB 具有严格的底物特异性,其脱甲基活性受到 Fe 的刺激 系统发育分析表明,BmoA 属于 Rieske 非血红素铁加氧酶 (RO) 家族的 V 组,该组的所有成员都能够使用季铵盐作为底物。GB 在自然界中广泛存在。除了作为一种相容性溶质在细胞内积累以应对渗透胁迫外,它还可以被许多细菌用作碳源和能源。然而,目前对于细菌中 GB 有氧降解途径的初始步骤的分子和生化机制知之甚少。在这里,我们报告了一种新型双组分 Rieske 型单加氧酶系统,即甘氨酸甜菜碱单加氧酶 (BMO) 的分子和生化特征,该系统负责 DSM 3043 中甘氨酸甜菜碱的氧化脱甲基生成二甲基甘氨酸。本研究的结果扩展了我们对微生物 GB 降解生成二甲基甘氨酸的催化反应的认识。

相似文献

2
Role of ,-Dimethylglycine and Its Catabolism to Sarcosine in Chromohalobacter salexigens DSM 3043.
Appl Environ Microbiol. 2020 Aug 18;86(17). doi: 10.1128/AEM.01186-20.
4
Enhanced catabolism of glycine betaine and derivatives provides improved osmotic stress protection in PA1.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0031024. doi: 10.1128/aem.00310-24. Epub 2024 Jun 27.
6
Glycine betaine metabolism is enabled in PA1 by alterations to dimethylglycine dehydrogenase.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0209023. doi: 10.1128/aem.02090-23. Epub 2024 Mar 27.
7
Isolation and characterization of a novel peroxisomal choline monooxygenase in barley.
Planta. 2011 Dec;234(6):1215-26. doi: 10.1007/s00425-011-1478-9. Epub 2011 Jul 17.

引用本文的文献

1
Dual roles of glycine betaine, dimethylglycine, and sarcosine as osmoprotectants and nutrient sources for .
Appl Environ Microbiol. 2025 May 21;91(5):e0061925. doi: 10.1128/aem.00619-25. Epub 2025 Apr 23.
4
Enhanced catabolism of glycine betaine and derivatives provides improved osmotic stress protection in PA1.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0031024. doi: 10.1128/aem.00310-24. Epub 2024 Jun 27.
5
The polyextremophile adopts a dual adaptive strategy to long-term salinity stress, simultaneously accumulating compatible solutes and K.
Appl Environ Microbiol. 2024 May 21;90(5):e0014524. doi: 10.1128/aem.00145-24. Epub 2024 Apr 5.
6
Glycine betaine metabolism is enabled in PA1 by alterations to dimethylglycine dehydrogenase.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0209023. doi: 10.1128/aem.02090-23. Epub 2024 Mar 27.
7
Choline degradation in : identification of sources of formaldehyde.
J Bacteriol. 2024 Apr 18;206(4):e0008124. doi: 10.1128/jb.00081-24. Epub 2024 Mar 19.
8
Light-driven Oxidative Demethylation Reaction Catalyzed by a Rieske-type Non-heme Iron Enzyme Stc2.
ACS Catal. 2022 Dec 2;12(23):14559-14570. doi: 10.1021/acscatal.2c04232. Epub 2022 Nov 14.
9
Characterisation of an unusual cysteine pair in the Rieske carnitine monooxygenase CntA catalytic site.
FEBS J. 2023 Jun;290(11):2939-2953. doi: 10.1111/febs.16722. Epub 2023 Jan 19.

本文引用的文献

1
Establishment of a markerless gene deletion system in Chromohalobacter salexigens DSM 3043.
Extremophiles. 2017 Sep;21(5):839-850. doi: 10.1007/s00792-017-0946-y. Epub 2017 Jun 28.
2
A Rieske-Type Oxygenase of Pseudomonas sp. BIOMIG1 Converts Benzalkonium Chlorides to Benzyldimethyl Amine.
Environ Sci Technol. 2017 Jan 3;51(1):175-181. doi: 10.1021/acs.est.6b03705. Epub 2016 Nov 20.
3
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.
4
Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4268-73. doi: 10.1073/pnas.1316569111. Epub 2014 Mar 3.
6
Cellular choline and glycine betaine pools impact osmoprotection and phospholipase C production in Pseudomonas aeruginosa.
J Bacteriol. 2012 Sep;194(17):4718-26. doi: 10.1128/JB.00596-12. Epub 2012 Jun 29.
7
Complete genome sequence of the halophilic and highly halotolerant Chromohalobacter salexigens type strain (1H11(T)).
Stand Genomic Sci. 2011 Dec 31;5(3):379-88. doi: 10.4056/sigs.2285059. Epub 2011 Dec 30.
9
Phylogenetic analysis reveals the surprising diversity of an oxygenase class.
J Biol Inorg Chem. 2012 Mar;17(3):425-36. doi: 10.1007/s00775-011-0865-9. Epub 2011 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验