Suppr超能文献

用于缺氧缺血后广义脑电图癫痫发作检测的深度学习——临床前验证

Deep Learning for Generalized EEG Seizure Detection after Hypoxia-Ischemia-Preclinical Validation.

作者信息

Abbasi Hamid, Davidson Joanne O, Dhillon Simerdeep K, Zhou Kelly Q, Wassink Guido, Gunn Alistair J, Bennet Laura

机构信息

Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.

Auckland Bioengineering Institute (ABI), University of Auckland, Auckland 1010, New Zealand.

出版信息

Bioengineering (Basel). 2024 Feb 24;11(3):217. doi: 10.3390/bioengineering11030217.

Abstract

Brain maturity and many clinical treatments such as therapeutic hypothermia (TH) can significantly influence the morphology of neonatal EEG seizures after hypoxia-ischemia (HI), and so there is a need for generalized automatic seizure identification. This study validates efficacy of advanced deep-learning pattern classifiers based on a convolutional neural network (CNN) for seizure detection after HI in fetal sheep and determines the effects of maturation and brain cooling on their accuracy. The cohorts included HI-normothermia term ( = 7), HI-hypothermia term ( = 14), sham-normothermia term ( = 5), and HI-normothermia preterm ( = 14) groups, with a total of >17,300 h of recordings. Algorithms were trained and tested using leave-one-out cross-validation and -fold cross-validation approaches. The accuracy of the term-trained seizure detectors was consistently excellent for HI-normothermia preterm data (accuracy = 99.5%, area under curve (AUC) = 99.2%). Conversely, when the HI-normothermia preterm data were used in training, the performance on HI-normothermia term and HI-hypothermia term data fell (accuracy = 98.6%, AUC = 96.5% and accuracy = 96.9%, AUC = 89.6%, respectively). Findings suggest that HI-normothermia preterm seizures do not contain all the spectral features seen at term. Nevertheless, an average 5-fold cross-validated accuracy of 99.7% (AUC = 99.4%) was achieved from all seizure detectors. This significant advancement highlights the reliability of the proposed deep-learning algorithms in identifying clinically translatable post-HI stereotypic seizures in 256Hz recordings, regardless of maturity and with minimal impact from hypothermia.

摘要

脑成熟度以及许多临床治疗方法,如治疗性低温(TH),可显著影响缺氧缺血(HI)后新生儿脑电图癫痫发作的形态,因此需要通用的自动癫痫识别方法。本研究验证了基于卷积神经网络(CNN)的先进深度学习模式分类器在胎羊HI后癫痫检测中的有效性,并确定了成熟度和脑冷却对其准确性的影响。研究队列包括HI-正常体温足月组(n = 7)、HI-低温足月组(n = 14)、假手术-正常体温足月组(n = 5)和HI-正常体温早产组(n = 14),记录时长总计超过17300小时。使用留一法交叉验证和k折交叉验证方法对算法进行训练和测试。足月训练的癫痫检测器对HI-正常体温早产数据的准确性始终很高(准确率 = 99.5%,曲线下面积(AUC) = 99.2%)。相反,当使用HI-正常体温早产数据进行训练时,对HI-正常体温足月数据和HI-低温足月数据的性能下降(准确率分别为98.6%,AUC = 96.5%和准确率 = 96.9%,AUC = 89.6%)。研究结果表明,HI-正常体温早产癫痫发作不包含足月时所见的所有频谱特征。尽管如此,所有癫痫检测器的平均5折交叉验证准确率达到了99.7%(AUC = 99.4%)。这一重大进展突出了所提出的深度学习算法在识别256Hz记录中临床上可转化的HI后刻板癫痫发作方面的可靠性,无论成熟度如何,且受低温影响最小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/845b/10968073/2fe0338753c9/bioengineering-11-00217-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验