Suppr超能文献

机器学习在新生儿缺氧缺血性脑病电描记惊厥中对婴儿的早期预测。

Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic-ischemic encephalopathy.

机构信息

INFANT Research Centre, University College Cork, Cork, Ireland.

Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.

出版信息

Epilepsia. 2023 Feb;64(2):456-468. doi: 10.1111/epi.17468. Epub 2022 Dec 20.

Abstract

OBJECTIVE

To assess if early clinical and electroencephalography (EEG) features predict later seizure development in infants with hypoxic-ischemic encephalopathy (HIE).

METHODS

Clinical and EEG parameters <12 h of birth from infants with HIE across eight European Neonatal Units were used to develop seizure-prediction models. Clinical parameters included intrapartum complications, fetal distress, gestational age, delivery mode, gender, birth weight, Apgar scores, assisted ventilation, cord pH, and blood gases. The earliest EEG hour provided a qualitative analysis (discontinuity, amplitude, asymmetry/asynchrony, sleep-wake cycle [SWC]) and a quantitative analysis (power, discontinuity, spectral distribution, inter-hemispheric connectivity) from full montage and two-channel amplitude-integrated EEG (aEEG). Subgroup analysis, only including infants without anti-seizure medication (ASM) prior to EEG was also performed. Machine-learning (ML) models (random forest and gradient boosting algorithms) were developed to predict infants who would later develop seizures and assessed using Matthews correlation coefficient (MCC) and area under the receiver-operating characteristic curve (AUC).

RESULTS

The study included 162 infants with HIE (53 had seizures). Low Apgar, need for ventilation, high lactate, low base excess, absent SWC, low EEG power, and increased EEG discontinuity were associated with seizures. The following predictive models were developed: clinical (MCC 0.368, AUC 0.681), qualitative EEG (MCC 0.467, AUC 0.729), quantitative EEG (MCC 0.473, AUC 0.730), clinical and qualitative EEG (MCC 0.470, AUC 0.721), and clinical and quantitative EEG (MCC 0.513, AUC 0.746). The clinical and qualitative-EEG model significantly outperformed the clinical model alone (MCC 0.470 vs 0.368, p-value .037). The clinical and quantitative-EEG model significantly outperformed the clinical model (MCC 0.513 vs 0.368, p-value .012). The clinical and quantitative-EEG model for infants without ASM (n = 131) had MCC 0.588, AUC 0.832. Performance for quantitative aEEG (n = 159) was MCC 0.381, AUC 0.696 and clinical and quantitative aEEG was MCC 0.384, AUC 0.720.

SIGNIFICANCE

Early EEG background analysis combined with readily available clinical data helped predict infants who were at highest risk of seizures, hours before they occur. Automated quantitative-EEG analysis was as good as expert analysis for predicting seizures, supporting the use of automated assessment tools for early evaluation of HIE.

摘要

目的

评估在患有缺氧缺血性脑病(HIE)的婴儿中,早期临床和脑电图(EEG)特征是否能预测后期癫痫发作的发生。

方法

本研究使用来自欧洲 8 个新生儿病房的 HIE 婴儿出生后 12 小时内的临床和 EEG 参数,开发了癫痫预测模型。临床参数包括分娩过程中的并发症、胎儿窘迫、胎龄、分娩方式、性别、出生体重、阿普加评分、辅助通气、脐带 pH 值和血气值。最早的 EEG 小时提供了定性分析(不连续性、振幅、不对称/不同步、睡眠-觉醒周期[SWC])和定量分析(功率、不连续性、频谱分布、半球间连通性),来自全导联和双通道振幅整合脑电图(aEEG)。还进行了仅包括 EEG 前无抗癫痫药物(ASM)的婴儿的亚组分析。使用马修斯相关系数(MCC)和接受者操作特征曲线下面积(AUC)评估了机器学习(ML)模型(随机森林和梯度提升算法)预测后期会发生癫痫的婴儿的能力。

结果

本研究纳入了 162 名患有 HIE 的婴儿(53 名患有癫痫)。低 Apgar 评分、需要通气、高乳酸、低碱剩余、无 SWC、低 EEG 功率和增加的 EEG 不连续性与癫痫发作相关。开发了以下预测模型:临床(MCC 0.368,AUC 0.681)、定性 EEG(MCC 0.467,AUC 0.729)、定量 EEG(MCC 0.473,AUC 0.730)、临床和定性 EEG(MCC 0.470,AUC 0.721)和临床和定量 EEG(MCC 0.513,AUC 0.746)。临床和定性-EEG 模型明显优于单独的临床模型(MCC 0.470 比 0.368,p 值.037)。临床和定量-EEG 模型明显优于临床模型(MCC 0.513 比 0.368,p 值.012)。对于没有 ASM 的婴儿(n=131)的临床和定量-EEG 模型具有 MCC 0.588,AUC 0.832。定量 aEEG 的性能(n=159)为 MCC 0.381,AUC 0.696,临床和定量 aEEG 为 MCC 0.384,AUC 0.720。

意义

早期 EEG 背景分析与易于获得的临床数据相结合,有助于在癫痫发作前数小时预测癫痫发作风险最高的婴儿。自动定量 EEG 分析与专家分析一样可用于预测癫痫发作,支持使用自动评估工具对 HIE 进行早期评估。

相似文献

引用本文的文献

2
Short-horizon neonatal seizure prediction using EEG-based deep learning.基于脑电图的深度学习进行短期新生儿癫痫预测
PLOS Digit Health. 2025 Jul 11;4(7):e0000890. doi: 10.1371/journal.pdig.0000890. eCollection 2025 Jul.
4
The impact of sleep in high-risk infants.睡眠对高危婴儿的影响。
Pediatr Res. 2025 Apr 10. doi: 10.1038/s41390-025-04049-2.
5
Review of Precision Medicine and Diagnosis of Neonatal Illness.精准医学与新生儿疾病诊断综述
Diagnostics (Basel). 2025 Feb 16;15(4):478. doi: 10.3390/diagnostics15040478.

本文引用的文献

3
Does the first hour of continuous electroencephalography predict neonatal seizures?连续脑电图的前 1 小时能否预测新生儿癫痫发作?
Arch Dis Child Fetal Neonatal Ed. 2021 Mar;106(2):162-167. doi: 10.1136/archdischild-2020-318985. Epub 2020 Sep 14.
5
Artificial intelligence and the future of global health.人工智能与全球健康的未来。
Lancet. 2020 May 16;395(10236):1579-1586. doi: 10.1016/S0140-6736(20)30226-9.
9
Machine learning applications in epilepsy.机器学习在癫痫中的应用。
Epilepsia. 2019 Oct;60(10):2037-2047. doi: 10.1111/epi.16333. Epub 2019 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验