Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, United States.
Comput Methods Programs Biomed. 2022 Mar;215:106604. doi: 10.1016/j.cmpb.2021.106604. Epub 2021 Dec 29.
Epilepsy is one of the most common neurological disorders, whose development is typically detected via early seizures. Electroencephalogram (EEG) is prevalently employed for seizure identification due to its routine and low expense collection. The stochastic nature of EEG makes manual seizure inspections laborsome, motivating automated seizure identification. The relevant literature focuses mostly on supervised machine learning. Despite their success, supervised methods require expert labels indicating seizure segments, which are difficult to obtain on clinically-acquired EEG. Thus, we aim to devise an unsupervised method for seizure identification on EEG.
We propose the first fully-unsupervised deep learning method for seizure identification on raw EEG, using a variational autoencoder (VAE). In doing so, we train the VAE on recordings without seizures. As training captures non-seizure activity, we identify seizures with respect to the reconstruction errors at inference time. Moreover, we extend the traditional VAE training loss to suppress EEG artifacts. Our method does not require ground-truth expert labels indicating seizure segments or manual feature extraction.
We implement our method using the PyTorch library and execute experiments on an NVIDIA V100 GPU. We evaluate our method on three benchmark EEG datasets: (i) intracranial recordings from the University of Pennsylvania and the Mayo Clinic, (ii) scalp recordings from the Temple University Hospital of Philadelphia, and (iii) scalp recordings from the Massachusetts Institute of Technology and the Boston Children's Hospital. To assess performance, we report accuracy, precision, recall, Area under the Receiver Operating Characteristics Curve (AUC), and p-value under the Welch t-test for distinguishing seizure vs. non-seizure EEG windows. Our approach can successfully distinguish seizures from non-seizure activity, with up to 0.83 AUC on intracranial recordings. Moreover, our algorithm has the potential for real-time inference, by processing at least 10 s of EEG in a second.
We take the first successful steps in deep learning-based unsupervised seizure identification on raw EEG. Our approach has the potential of alleviating the burden on clinical experts regarding laborsome EEG inspections for seizures. Furthermore, aiding the identification of early seizures via our method could facilitate successful detection of epilepsy development and initiate antiepileptogenic therapies.
癫痫是最常见的神经障碍之一,其发展通常通过早期发作来检测。脑电图(EEG)因其常规和低成本采集而被广泛用于发作识别。EEG 的随机性使得手动发作检查非常繁琐,这促使了自动发作识别的发展。相关文献主要集中在有监督机器学习上。尽管它们取得了成功,但有监督的方法需要专家标记来指示发作段,而这些标记在临床上获取的 EEG 上很难获得。因此,我们旨在设计一种用于 EEG 上发作识别的无监督方法。
我们提出了第一个用于原始 EEG 上发作识别的完全无监督深度学习方法,使用变分自编码器(VAE)。在这样做的过程中,我们在没有发作的记录上训练 VAE。由于训练捕获了非发作活动,我们在推理时根据重建误差来识别发作。此外,我们扩展了传统的 VAE 训练损失来抑制 EEG 伪影。我们的方法不需要指示发作段的专家标记或手动特征提取。
我们使用 PyTorch 库实现了我们的方法,并在 NVIDIA V100 GPU 上执行了实验。我们在三个基准 EEG 数据集上评估了我们的方法:(i)宾夕法尼亚大学和梅奥诊所的颅内记录,(ii)费城坦普尔大学医院的头皮记录,以及(iii)麻省理工学院和波士顿儿童医院的头皮记录。为了评估性能,我们报告了准确性、精度、召回率、接收器操作特征曲线(AUC)下的面积和 Welch t 检验下区分发作与非发作 EEG 窗口的 p 值。我们的方法可以成功地区分发作与非发作活动,在颅内记录中可达 0.83 AUC。此外,我们的算法具有实时推理的潜力,每秒至少可以处理 10 秒的 EEG。
我们在基于深度学习的原始 EEG 无监督发作识别方面迈出了成功的第一步。我们的方法有可能减轻临床专家在繁琐的 EEG 检查发作方面的负担。此外,通过我们的方法辅助早期发作的识别可以促进癫痫发展的成功检测,并启动抗癫痫治疗。