Suppr超能文献

具有行为考量和维度学习的灰狼优化算法在三维牙齿模型重建中的应用

Grey Wolf Optimizer with Behavior Considerations and Dimensional Learning in Three-Dimensional Tooth Model Reconstruction.

作者信息

Wongkhuenkaew Ritipong, Auephanwiriyakul Sansanee, Chaiworawitkul Marasri, Theera-Umpon Nipon, Yeesarapat Uklid

机构信息

Department of Computer Engineering, Faculty of Engineering, Biomedical Engineering Institute, Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai 50200, Thailand.

Department of Computer Engineering, Faculty of Engineering, Excellence Center in Infrastructure Technology and Transportation Engineering, Biomedical Engineering Institute, Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai 50200, Thailand.

出版信息

Bioengineering (Basel). 2024 Mar 5;11(3):254. doi: 10.3390/bioengineering11030254.

Abstract

Three-dimensional registration with the affine transform is one of the most important steps in 3D reconstruction. In this paper, the modified grey wolf optimizer with behavior considerations and dimensional learning (BCDL-GWO) algorithm as a registration method is introduced. To refine the 3D registration result, we incorporate the iterative closet point (ICP). The BCDL-GWO with ICP method is implemented on the scanned commercial orthodontic tooth and regular tooth models. Since this is a registration from multi-views of optical images, the hierarchical structure is implemented. According to the results for both models, the proposed algorithm produces high-quality 3D visualization images with the smallest mean squared error of about 7.2186 and 7.3999 μm, respectively. Our results are compared with the statistical randomization-based particle swarm optimization (SR-PSO). The results show that the BCDL-GWO with ICP is better than those from the SR-PSO. However, the computational complexities of both methods are similar.

摘要

采用仿射变换的三维配准是三维重建中最重要的步骤之一。本文介绍了一种具有行为考虑和维度学习的改进灰狼优化算法(BCDL-GWO)作为一种配准方法。为了优化三维配准结果,我们引入了迭代最近点算法(ICP)。基于ICP的BCDL-GWO方法在扫描的商用正畸牙齿模型和常规牙齿模型上实现。由于这是从光学图像的多视图进行配准,因此采用了分层结构。根据两个模型的结果,所提出的算法分别以约7.2186和7.3999μm的最小均方误差生成了高质量的三维可视化图像。我们的结果与基于统计随机化的粒子群优化算法(SR-PSO)进行了比较。结果表明,基于ICP的BCDL-GWO优于SR-PSO。然而,两种方法的计算复杂度相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c04/10968360/ccb814923f6e/bioengineering-11-00254-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验