Suppr超能文献

用于抓取任务的仿生结构与表面

Biomimetic Structure and Surface for Grasping Tasks.

作者信息

Li Jingyang, Yin Fujie, Tian Yu

机构信息

State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.

Xingjian College, Tsinghua University, Beijing 100084, China.

出版信息

Biomimetics (Basel). 2024 Feb 27;9(3):144. doi: 10.3390/biomimetics9030144.

Abstract

Under water, on land, or in the air, creatures use a variety of grasping methods to hunt, avoid predators, or carry food. Numerous studies have been conducted to construct a bionic surface for grasping tasks. This paper reviews the typical biomimetic structures and surfaces (wedge-shaped surface, suction cup surface and thorn claw surface) for grasping scenarios. Initially, progress in gecko-inspired wedge-shaped adhesive surfaces is reviewed, encompassing the underlying mechanisms that involve tuning the contact area and peeling behavior. The applications of grippers utilizing this adhesive technology are also discussed. Subsequently, the suction force mechanisms and applications of surfaces inspired by octopus and remora suction cups are outlined. Moreover, this paper introduces the applications of robots incorporating the principles of beetle-inspired and bird-inspired thorn claw structures. Lastly, inspired by remoras' adhesive discs, a composite biomimetic adhesive surface is proposed. It integrates features from wedge-shaped, suction cup, and claw thorn surfaces, potentially surpassing the adaptability of basic bioinspired surfaces. This surface construction method offers a potential avenue to enhance adhesion capabilities with superior adaptability to surface roughness and curvature.

摘要

在水下、陆地或空中,生物使用各种抓握方法来捕食、躲避捕食者或搬运食物。为了构建用于抓握任务的仿生表面,已经进行了大量研究。本文综述了用于抓握场景的典型仿生结构和表面(楔形表面、吸盘表面和棘爪表面)。首先,回顾了受壁虎启发的楔形粘性表面的进展,包括涉及调整接触面积和剥离行为的潜在机制。还讨论了利用这种粘性技术的夹具的应用。随后,概述了受章鱼和印鱼吸盘启发的表面的吸力机制和应用。此外,本文介绍了结合甲虫启发和鸟类启发的棘爪结构原理的机器人的应用。最后,受印鱼粘附盘的启发,提出了一种复合仿生粘附表面。它整合了楔形、吸盘和爪刺表面的特征,可能超越基本仿生表面的适应性。这种表面构建方法提供了一条潜在途径,可增强粘附能力,并对表面粗糙度和曲率具有卓越的适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c97c/10967874/71edf09cf1e7/biomimetics-09-00144-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验