Maksimovic Vladimir, Jaksic Branimir, Milosevic Mirko, Todorovic Jelena, Mosurovic Lazar
Faculty of Technical Sciences, University of Pristina in Kosovska Mitrovica, Kneza Milosa 7, 38220 Kosovska Mitrovica, Serbia.
Academy of Technical and Art Applied Studies, School of Electrical and Computer Engineering, Vojvode Stepe 283, 11000 Belgrade, Serbia.
Sensors (Basel). 2024 Dec 27;25(1):87. doi: 10.3390/s25010087.
The manuscript conducts a comparative analysis to assess the impact of noise on medical images using a proposed threshold value estimation approach. It applies an innovative method for edge detection on images of varying complexity, considering different noise types and concentrations of noise. Five edges are evaluated on images with low, medium, and high detail levels. This study focuses on medical images from three distinct datasets: retinal images, brain tumor segmentation, and lung segmentation from CT scans. The importance of noise analysis is heightened in medical imaging, as noise can significantly obscure the critical features and potentially lead to misdiagnoses. Images are categorized based on the complexity, providing a multidimensional view of noise's effect on edge detection. The algorithm utilized the grid search (GS) method and random search with nine values (RS9). The results demonstrate the effectiveness of the proposed approach, especially when using the Canny operator, across diverse noise types and intensities. Laplace operators are most affected by noise, yet significant improvements are observed with the new approach, particularly when using the grid search method. The obtained results are compared with the most popular techniques for edge detection using deep learning like AlexNet, ResNet, VGGNet, MobileNetv2, and Inceptionv3. The paper presents the results via graphs and edge images, along with a detailed analysis of each operator's performance with noisy images using the proposed approach.
该手稿采用一种提出的阈值估计方法进行比较分析,以评估噪声对医学图像的影响。它对不同复杂度的图像应用了一种创新的边缘检测方法,考虑了不同的噪声类型和噪声浓度。在低、中、高细节水平的图像上评估了五条边缘。本研究聚焦于来自三个不同数据集的医学图像:视网膜图像、脑肿瘤分割以及CT扫描的肺部分割。在医学成像中,噪声分析的重要性日益凸显,因为噪声会显著模糊关键特征并可能导致误诊。图像根据复杂度进行分类,提供了噪声对边缘检测影响的多维度视图。该算法利用了网格搜索(GS)方法和具有九个值的随机搜索(RS9)。结果证明了所提出方法的有效性,特别是在使用Canny算子时,在不同的噪声类型和强度下均有效。拉普拉斯算子受噪声影响最大,但采用新方法观察到了显著改进,特别是在使用网格搜索方法时。将获得的结果与使用深度学习进行边缘检测的最流行技术(如AlexNet、ResNet、VGGNet、MobileNetv2和Inceptionv3)进行了比较。本文通过图表和边缘图像展示了结果,并使用所提出的方法对每个算子在有噪声图像上的性能进行了详细分析。