Suppr超能文献

用于膜基人工器官的中空纤维膜组件传质的数值模拟

Numerical Simulation of Mass Transfer in Hollow Fiber Membrane Module for Membrane-Based Artificial Organs.

作者信息

Wang Ziheng, Xu Shaofeng, Yu Yifan, Zhang Wei, Zhang Xuechang

机构信息

School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, China.

School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315000, China.

出版信息

Membranes (Basel). 2024 Mar 10;14(3):67. doi: 10.3390/membranes14030067.

Abstract

The mass transfer behavior in a hollow fiber membrane module of membrane-based artificial organs (such as artificial liver or artificial kidney) were studied by numerical simulation. A new computational fluid dynamics (CFD) method coupled with K-K equation and the tortuous capillary pore diffusion model (TCPDM) was proposed for the simulations. The urea clearance rate predicted by the use of the numerical model agrees well with the experimental data, which verifies the validity of our numerical model. The distributions of concentration, pressure, and velocity in the hollow fiber membrane module were obtained to analyze the mass transfer behaviors of bilirubin and bovine serum albumin (BSA), and the effects of tube-side flow rate, shell-side flow rate, and fiber tube length on the bilirubin or BSA clearance rate were studied. The results show that the solute transport mainly occurred in the near inlet regions in the hollow fiber membrane module. Increasing the tube-side flow rate and the fiber tube length can effectively enhance the solute clearance rate, while the shell-side flow rate has less influence on the BSA clearance. The clearance of macromolecule BSA is dominated by convective solute transport, while the clearance of small molecule bilirubin is significantly affected by both convective and diffusive solute transport.

摘要

通过数值模拟研究了基于膜的人工器官(如人工肝或人工肾)中空纤维膜组件中的传质行为。提出了一种结合K-K方程和曲折毛细管孔隙扩散模型(TCPDM)的新型计算流体动力学(CFD)方法进行模拟。使用数值模型预测的尿素清除率与实验数据吻合良好,验证了我们数值模型的有效性。获得了中空纤维膜组件中浓度、压力和速度的分布,以分析胆红素和牛血清白蛋白(BSA)的传质行为,并研究了管侧流速、壳侧流速和纤维管长度对胆红素或BSA清除率的影响。结果表明,溶质传输主要发生在中空纤维膜组件的近入口区域。增加管侧流速和纤维管长度可以有效提高溶质清除率,而壳侧流速对BSA清除率的影响较小。大分子BSA的清除主要由对流溶质传输主导,而小分子胆红素的清除则受到对流和扩散溶质传输的显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daba/10971835/e40a04adb7da/membranes-14-00067-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验