Suppr超能文献

深度学习框架 iCanTCR 利用外周血中的 T 细胞受体库进行早期癌症检测。

The Deep Learning Framework iCanTCR Enables Early Cancer Detection Using the T-cell Receptor Repertoire in Peripheral Blood.

机构信息

School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.

School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China.

出版信息

Cancer Res. 2024 Jun 4;84(11):1915-1928. doi: 10.1158/0008-5472.CAN-23-0860.

Abstract

UNLABELLED

T cells recognize tumor antigens and initiate an anticancer immune response in the very early stages of tumor development, and the antigen specificity of T cells is determined by the T-cell receptor (TCR). Therefore, monitoring changes in the TCR repertoire in peripheral blood may offer a strategy to detect various cancers at a relatively early stage. Here, we developed the deep learning framework iCanTCR to identify patients with cancer based on the TCR repertoire. The iCanTCR framework uses TCRβ sequences from an individual as an input and outputs the predicted cancer probability. The model was trained on over 2,000 publicly available TCR repertoires from 11 types of cancer and healthy controls. Analysis of several additional publicly available datasets validated the ability of iCanTCR to distinguish patients with cancer from noncancer individuals and demonstrated the capability of iCanTCR for the accurate classification of multiple cancers. Importantly, iCanTCR precisely identified individuals with early-stage cancer with an AUC of 86%. Altogether, this work provides a liquid biopsy approach to capture immune signals from peripheral blood for noninvasive cancer diagnosis.

SIGNIFICANCE

Development of a deep learning-based method for multicancer detection using the TCR repertoire in the peripheral blood establishes the potential of evaluating circulating immune signals for noninvasive early cancer detection.

摘要

未标记

T 细胞识别肿瘤抗原,并在肿瘤发展的早期阶段启动抗癌免疫反应,T 细胞的抗原特异性由 T 细胞受体(TCR)决定。因此,监测外周血中 TCR 库的变化可能提供一种在相对较早阶段检测各种癌症的策略。在这里,我们开发了深度学习框架 iCanTCR,基于 TCR 库来识别癌症患者。iCanTCR 框架将个体的 TCRβ 序列作为输入,并输出预测的癌症概率。该模型在来自 11 种癌症和健康对照的 2000 多个公开可用的 TCR 库上进行了训练。对几个额外的公开可用数据集的分析验证了 iCanTCR 区分癌症患者和非癌症个体的能力,并证明了 iCanTCR 对多种癌症进行准确分类的能力。重要的是,iCanTCR 精确地识别出早期癌症患者,AUC 为 86%。总的来说,这项工作提供了一种液体活检方法,从外周血中捕获免疫信号,用于非侵入性癌症诊断。

意义

开发一种基于深度学习的方法,使用外周血中的 TCR 库进行多种癌症检测,为评估循环免疫信号用于非侵入性早期癌症检测奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验