Suppr超能文献

美国海军陆战队人员流失预测:四种预测方法的比较。

Predictions of attrition among US Marine Corps: Comparison of four predictive methods.

作者信息

Alzate Vanegas Juan Manuel, Wine William, Drasgow Fritz

机构信息

Department of Psychology, University of Illinois, Champaign, Illinois, USA.

United States Marine Corps, Arlington, Virginia, USA.

出版信息

Mil Psychol. 2021 Nov 19;34(2):147-166. doi: 10.1080/08995605.2021.1978754. eCollection 2022.

Abstract

The present study compared the performance of logistic regression models with that of machine learning classification models (classification trees and random forests) in the context of predicting training attrition from the Delayed Enlistment Program in the United States Marine Corps (USMC) with scores from the Tailored Adaptive Personality Assessment System (TAPAS). Performance was assessed according to the type of misclassification error and across a variety of different reasons for attrition. The base rate of attrition was low, which impeded the training process, but the machine learning models outperformed logistic regression in predicting voluntary attrition in a stratified 50% attrition sample.

摘要

本研究在美国海军陆战队(USMC)延迟入伍计划中,使用量身定制的适应性人格评估系统(TAPAS)的分数,比较了逻辑回归模型与机器学习分类模型(分类树和随机森林)在预测训练流失方面的表现。根据错误分类误差的类型以及各种不同的流失原因对表现进行了评估。流失的基础比率较低,这阻碍了训练进程,但在一个分层的50%流失样本中,机器学习模型在预测自愿流失方面优于逻辑回归。

相似文献

1
Predictions of attrition among US Marine Corps: Comparison of four predictive methods.
Mil Psychol. 2021 Nov 19;34(2):147-166. doi: 10.1080/08995605.2021.1978754. eCollection 2022.
4
Attrition and reenlistment in the Army: Using the Tailored Adaptive Personality Assessment System (TAPAS) to improve retention.
Mil Psychol. 2020 Feb 4;32(1):36-50. doi: 10.1080/08995605.2019.1652487. eCollection 2020.
7
Validation of the TAPAS for predicting in-unit soldier outcomes.
Mil Psychol. 2020 Feb 4;32(1):24-35. doi: 10.1080/08995605.2019.1652484. eCollection 2020.

引用本文的文献

1
Predicting ranger attrition.
Mil Psychol. 2025 Jan 2;37(1):73-84. doi: 10.1080/08995605.2023.2300620. Epub 2024 Jan 2.

本文引用的文献

1
Predictors of attitudes and performance in U.S. Army recruiters: Does personality matter?
Mil Psychol. 2020 Feb 4;32(1):81-90. doi: 10.1080/08995605.2019.1652486. eCollection 2020.
2
3
Using machine learning to translate applicant work history into predictors of performance and turnover.
J Appl Psychol. 2019 Oct;104(10):1207-1225. doi: 10.1037/apl0000405. Epub 2019 Mar 25.
4
Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning.
Perspect Psychol Sci. 2017 Nov;12(6):1100-1122. doi: 10.1177/1745691617693393. Epub 2017 Aug 25.
5
A new condition for assessing the clinical efficiency of a diagnostic test.
Psychol Assess. 2015 Sep;27(3):745-54. doi: 10.1037/pas0000093. Epub 2015 Apr 20.
6
Regularization Parameter Selections via Generalized Information Criterion.
J Am Stat Assoc. 2010 Mar 1;105(489):312-323. doi: 10.1198/jasa.2009.tm08013.
7
Approach and avoidance temperament as basic dimensions of personality.
J Pers. 2010 Jun;78(3):865-906. doi: 10.1111/j.1467-6494.2010.00636.x.
8
Reducing voluntary, avoidable turnover through selection.
J Appl Psychol. 2005 Jan;90(1):159-166. doi: 10.1037/0021-9010.90.1.159.
10
A note on base rates and psychometric efficiency.
J Consult Psychol. 1962 Oct;26:422-4. doi: 10.1037/h0044612.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验