Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.
Department of Healthcare Information Management, The University of Tokyo Hospital, Tokyo, Japan.
PLoS One. 2024 Mar 27;19(3):e0300817. doi: 10.1371/journal.pone.0300817. eCollection 2024.
Bronchopulmonary dysplasia (BPD) poses a substantial global health burden. Individualized treatment strategies based on early prediction of the development of BPD can mitigate preterm birth complications; however, previously suggested predictive models lack early postnatal applicability. We aimed to develop predictive models for BPD and mortality based on immediate postnatal clinical data.
Clinical information on very preterm and very low birth weight infants born between 2008 and 2018 was extracted from a nationwide Japanese database. The gradient boosting decision trees (GBDT) algorithm was adopted to predict BPD and mortality, using predictors within the first 6 h postpartum. We assessed the temporal validity and evaluated model adequacy using Shapley additive explanations (SHAP) values.
We developed three predictive models using data from 39,488, 39,096, and 40,291 infants to predict "death or BPD," "death or severe BPD," and "death before discharge," respectively. These well-calibrated models achieved areas under the receiver operating characteristic curve of 0.828 (95% CI: 0.828-0.828), 0.873 (0.873-0.873), and 0.887 (0.887-0.888), respectively, outperforming the multivariable logistic regression models. SHAP value analysis identified predictors of BPD, including gestational age, size at birth, male sex, and persistent pulmonary hypertension. In SHAP value-based case clustering, the "death or BPD" prediction model stratified infants by gestational age and persistent pulmonary hypertension, whereas the other models for "death or severe BPD" and "death before discharge" commonly formed clusters of low mortality, extreme prematurity, low Apgar scores, and persistent pulmonary hypertension of the newborn.
GBDT models for predicting BPD and mortality, designed for use within 6 h postpartum, demonstrated superior prognostic performance. SHAP value-based clustering, a data-driven approach, formed clusters of clinical relevance. These findings suggest the efficacy of a GBDT algorithm for the early postnatal prediction of BPD.
支气管肺发育不良(BPD)是一个重大的全球健康负担。基于对 BPD 发展的早期预测的个体化治疗策略可以减轻早产并发症;然而,以前提出的预测模型缺乏早期产后适用性。我们旨在基于即时产后临床数据开发用于 BPD 和死亡率的预测模型。
从 2008 年至 2018 年期间的全国性日本数据库中提取了非常早产和极低出生体重儿的临床信息。采用产后 6 小时内的预测因子,采用梯度提升决策树(GBDT)算法预测 BPD 和死亡率。我们使用 Shapley 加性解释(SHAP)值评估了时间有效性并评估了模型充分性。
我们使用来自 39488、39096 和 40291 名婴儿的数据开发了三个预测模型,以预测“死亡或 BPD”、“死亡或严重 BPD”和“出院前死亡”。这些校准良好的模型的接收器操作特征曲线下面积分别为 0.828(95%CI:0.828-0.828)、0.873(0.873-0.873)和 0.887(0.887-0.888),优于多变量逻辑回归模型。SHAP 值分析确定了 BPD 的预测因子,包括胎龄、出生时大小、性别和持续性肺动脉高压。在基于 SHAP 值的病例聚类中,“死亡或 BPD”预测模型根据胎龄和持续性肺动脉高压对婴儿进行分层,而其他用于“死亡或严重 BPD”和“出院前死亡”的模型则共同形成了低死亡率、极端早产、低 Apgar 评分和新生儿持续性肺动脉高压的聚类。
用于预测 BPD 和死亡率的 GBDT 模型在产后 6 小时内使用,表现出优越的预后性能。基于 SHAP 值的聚类是一种数据驱动的方法,形成了具有临床相关性的聚类。这些发现表明 GBDT 算法在 BPD 的早期产后预测中的有效性。