Suppr超能文献

基于肘点法的 K-均值聚类算法的前列腺图像分割优化方法。

An Optimized Approach for Prostate Image Segmentation Using K-Means Clustering Algorithm with Elbow Method.

机构信息

Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia.

Department of Mathematics and Computer Science, Faculty of Sciences, Beirut Arab University, Beirut, Lebanon.

出版信息

Comput Intell Neurosci. 2021 Nov 15;2021:4553832. doi: 10.1155/2021/4553832. eCollection 2021.

Abstract

Prostate cancer disease is one of the common types that cause men's prostate damage all over the world. Prostate-specific membrane antigen (PSMA) expressed by type-II is an extremely attractive style for imaging-based diagnosis of prostate cancer. Clinically, photodynamic therapy (PDT) is used as noninvasive therapy in treatment of several cancers and some other diseases. This paper aims to segment or cluster and analyze pixels of histological and near-infrared (NIR) prostate cancer images acquired by PSMA-targeting PDT low weight molecular agents. Such agents can provide image guidance to resection of the prostate tumors and permit for the subsequent PDT in order to remove remaining or noneradicable cancer cells. The color prostate image segmentation is accomplished using an optimized image segmentation approach. The optimized approach combines the k-means clustering algorithm with elbow method that can give better clustering of pixels through automatically determining the best number of clusters. Clusters' statistics and ratio results of pixels in the segmented images show the applicability of the proposed approach for giving the optimum number of clusters for prostate cancer analysis and diagnosis.

摘要

前列腺癌是一种常见的疾病,会导致全世界男性的前列腺受损。II 型前列腺特异性膜抗原(PSMA)的表达是前列腺癌成像诊断极具吸引力的方式。临床上,光动力疗法(PDT)被用作几种癌症和其他一些疾病的非侵入性治疗方法。本文旨在对 PSMA 靶向 PDT 低分子量分子试剂获取的组织学和近红外(NIR)前列腺癌图像的像素进行分割或聚类分析。这些试剂可以为前列腺肿瘤的切除提供图像指导,并允许随后进行 PDT,以去除残留或无法根除的癌细胞。彩色前列腺图像分割是通过优化的图像分割方法来完成的。优化方法将 k-均值聚类算法与肘部方法相结合,通过自动确定最佳聚类数,可以更好地对像素进行聚类。分割图像中像素的聚类统计和比例结果表明,该方法适用于为前列腺癌分析和诊断提供最佳聚类数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4615/8608531/fba562ad8cb0/CIN2021-4553832.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验