Kéry Marc, Royle J Andrew, Hallman Tyler, Robinson W Douglas, Strebel Nicolas, Kellner Kenneth F
Swiss Ornithological Institute, Sempach, Switzerland.
USGS Eastern Ecological Science Center, Laurel, Maryland, USA.
Ecology. 2024 May;105(5):e4292. doi: 10.1002/ecy.4292. Epub 2024 Mar 27.
Point counts (PCs) are widely used in biodiversity surveys but, despite numerous advantages, simple PCs suffer from several problems: detectability, and therefore abundance, is unknown; systematic spatiotemporal variation in detectability yields biased inferences, and unknown survey area prevents formal density estimation and scaling-up to the landscape level. We introduce integrated distance sampling (IDS) models that combine distance sampling (DS) with simple PC or detection/nondetection (DND) data to capitalize on the strengths and mitigate the weaknesses of each data type. Key to IDS models is the view of simple PC and DND data as aggregations of latent DS surveys that observe the same underlying density process. This enables the estimation of separate detection functions, along with distinct covariate effects, for all data types. Additional information from repeat or time-removal surveys, or variable survey duration, enables the separate estimation of the availability and perceptibility components of detectability with DS and PC data. IDS models reconcile spatial and temporal mismatches among data sets and solve the above-mentioned problems of simple PC and DND data. To fit IDS models, we provide JAGS code and the new "IDS()" function in the R package unmarked. Extant citizen-science data generally lack the information necessary to adjust for detection biases, but IDS models address this shortcoming, thus greatly extending the utility and reach of these data. In addition, they enable formal density estimation in hybrid designs, which efficiently combine DS with distance-free, point-based PC or DND surveys. We believe that IDS models have considerable scope in ecology, management, and monitoring.
点计数法(PCs)在生物多样性调查中被广泛使用,但尽管有诸多优点,简单的点计数法仍存在几个问题:可检测性以及由此得出的丰度是未知的;可检测性的系统时空变化会产生有偏差的推断,并且未知的调查区域妨碍了正式的密度估计以及扩大到景观尺度。我们引入了综合距离抽样(IDS)模型,该模型将距离抽样(DS)与简单的点计数法或检测/未检测(DND)数据相结合,以利用每种数据类型的优势并减轻其弱点。IDS模型的关键在于将简单的点计数法和DND数据视为潜在距离抽样调查的汇总,这些调查观察到相同的潜在密度过程。这使得能够针对所有数据类型估计单独的检测函数以及不同的协变量效应。来自重复或时间去除调查的额外信息,或可变的调查持续时间,能够利用距离抽样和点计数法数据分别估计可检测性的可用性和可感知性组成部分。IDS模型协调了数据集之间的空间和时间不匹配问题,并解决了简单点计数法和DND数据的上述问题。为了拟合IDS模型,我们在R包unmarked中提供了JAGS代码和新的“IDS()”函数。现有的公民科学数据通常缺乏调整检测偏差所需的信息,但IDS模型解决了这一缺点,从而极大地扩展了这些数据的效用和范围。此外,它们能够在混合设计中进行正式的密度估计,这种设计有效地将距离抽样与无距离的、基于点的点计数法或DND调查相结合。我们认为IDS模型在生态学、管理和监测方面有相当大的应用范围。