Twining Joshua P, Augustine Ben C, Royle J Andrew, Fuller Angela K
New York Cooperative Fish and Wildlife Research Unit, Department of Natural Resources and the Environment, Cornell University, Fernow Hall, Ithaca, New York, USA.
Department of Fisheries, Wildlife, and Conservation Science, Oregon State University, Nash Hall, Corvallis, Oregon, USA.
Ecology. 2025 Jan;106(1):e4468. doi: 10.1002/ecy.4468. Epub 2024 Dec 5.
Species interactions shape biodiversity patterns, community assemblage, and the dynamics of wildlife populations. Ecological theory posits that the strength of interspecific interactions is fundamentally underpinned by the population sizes of the involved species. Nonetheless, prevalent approaches for modeling species interactions predominantly center around occupancy states. Here, we use simulations to illuminate the inadequacies of modeling species interactions solely as a function of occupancy, as is common practice in ecology. We demonstrate erroneous inference into species interactions due to error in parameter estimates when considering species occupancy alone. To address this critical issue, we propose, develop, and demonstrate an abundance-mediated interaction framework designed explicitly for modeling species interactions involving two or more species from detection/non-detection data. We present Markov chain Monte Carlo (MCMC) samplers tailored for diverse ecological scenarios, including intraguild predation, disease- or predator-mediated competition, and trophic cascades. Illustrating the practical implications of our approach, we compare inference from modeling the interactions in a three-species network involving coyotes (Canis latrans), fishers (Pekania pennanti), and American marten (Martes americana) in North America as a function of occupancy states and as a function of abundance. When modeling interactions as a function of abundance rather than occupancy, we uncover previously unidentified interactions. Our study emphasizes that accounting for abundance-mediated interactions rather than simple co-occurrence patterns can fundamentally alter our comprehension of system dynamics. Through an empirical case study and comprehensive simulations, we demonstrate the importance of accounting for abundance when modeling species interactions, and we present a statistical framework equipped with MCMC samplers to achieve this paradigm shift in ecological research.
物种间的相互作用塑造了生物多样性模式、群落组成以及野生动物种群的动态变化。生态理论认为,种间相互作用的强度从根本上取决于相关物种的种群规模。然而,目前用于模拟物种相互作用的普遍方法主要围绕着占有状态展开。在此,我们通过模拟来揭示仅将物种相互作用建模为占有情况的函数(这在生态学中是常见做法)存在的不足之处。我们证明,仅考虑物种占有情况时,由于参数估计误差会导致对物种相互作用的错误推断。为解决这一关键问题,我们提出、开发并展示了一个丰度介导的相互作用框架,该框架专为根据检测/未检测数据对涉及两个或更多物种的物种相互作用进行建模而设计。我们展示了针对不同生态场景量身定制的马尔可夫链蒙特卡罗(MCMC)采样器,这些场景包括公会内部捕食、疾病或捕食者介导的竞争以及营养级联。为说明我们方法的实际意义,我们比较了在一个包含北美郊狼(Canis latrans)、渔貂(Pekania pennanti)和美洲貂(Martes americana)的三物种网络中,将相互作用建模为占有状态的函数和建模为丰度的函数时所得出的推断结果。当将相互作用建模为丰度而非占有情况的函数时,我们发现了此前未被识别的相互作用。我们的研究强调,考虑丰度介导的相互作用而非简单的共存模式能够从根本上改变我们对系统动态的理解。通过一个实证案例研究和全面的模拟,我们证明了在对物种相互作用进行建模时考虑丰度的重要性,并展示了一个配备MCMC采样器的统计框架,以实现生态研究中的这一范式转变。