Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonju-ro, Gangnam-gu, Seoul, Republic of Korea.
Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
Sci Rep. 2024 Mar 27;14(1):7226. doi: 10.1038/s41598-024-57887-1.
Malalignment in the lower limb structure occurs due to various causes. Accurately evaluating limb alignment in situations where malalignment needs correction is necessary. To create an automated support system to evaluate lower limb alignment by quantifying mechanical tibiofemoral angle (mTFA), mechanical lateral distal femoral angle (mLDFA), medial proximal tibial angle (MPTA), and joint line convergence angle (JLCA) on full-length weight-bearing radiographs of both lower extremities. In this retrospective study, we analysed 404 radiographs from one hospital for algorithm development and testing and 30 radiographs from another hospital for external validation. The performance of segmentation algorithm was compared to that of manual segmentation using the dice similarity coefficient (DSC). The agreement of alignment parameters was assessed using the intraclass correlation coefficient (ICC) for internal and external validation. The time taken to load the data and measure the four alignment parameters was recorded. The segmentation algorithm demonstrated excellent agreement with human-annotated segmentation for all anatomical regions (average similarity: 89-97%). Internal validation yielded good to very good agreement for all the alignment parameters (ICC ranges: 0.7213-0.9865). Interobserver correlations between manual and automatic measurements in external validation were good to very good (ICC scores: 0.7126-0.9695). The computer-aided measurement was 3.44 times faster than was the manual measurement. Our deep learning-based automated measurement algorithm accurately quantified lower limb alignment from radiographs and was faster than manual measurement.
下肢结构对线不良是由多种原因引起的。在需要纠正对线不良的情况下,准确评估肢体对线是必要的。为了创建一个自动支持系统,通过量化机械胫股角(mTFA)、机械外侧股骨远端角(mLDFA)、内侧胫骨近端角(MPTA)和关节线会聚角(JLCA),对下肢全长负重位 X 线片进行评估。在这项回顾性研究中,我们分析了来自一家医院的 404 张 X 光片以开发和测试算法,以及来自另一家医院的 30 张 X 光片进行外部验证。我们将分割算法的性能与手动分割的 Dice 相似系数(DSC)进行了比较。我们对内、外部验证的对线参数的一致性采用组内相关系数(ICC)进行了评估。记录了加载数据和测量四个对线参数所花费的时间。分割算法在所有解剖区域与人工标注的分割具有极好的一致性(平均相似度:89-97%)。内部验证的所有对线参数均具有良好到极好的一致性(ICC 范围:0.7213-0.9865)。外部验证中手动和自动测量之间的观察者间相关性良好到极好(ICC 评分:0.7126-0.9695)。计算机辅助测量比手动测量快 3.44 倍。我们基于深度学习的自动测量算法可以从 X 光片中准确量化下肢对线,并且比手动测量更快。