Suppr超能文献

使用卷积神经网络进行下肢对线分析时具有较高的准确性,但关节水平指标仍需改进。

High accuracy in lower limb alignment analysis using convolutional neural networks, with improvements needed for joint-level metrics.

作者信息

Hoffmann Christof, Göksu Fatih, Klöpfer-Krämer Isabella, Watrinet Julius, Blum Philipp, Hungerer Sven, Schröter Steffen, Stuby Fabian, Augat Peter, Fürmetz Julian

机构信息

Department of Trauma Surgery, BG Trauma Center Murnau, Murnau, Germany.

Department of Orthopedics and Reconstructive Surgery, Diakonie Klinikum, GmbH Jung-Stilling-Krankenhaus, Siegen, Germany.

出版信息

Knee Surg Sports Traumatol Arthrosc. 2025 Jun;33(6):1975-1981. doi: 10.1002/ksa.12481. Epub 2024 Sep 22.

Abstract

PURPOSE

Evaluation of long-leg standing radiographs (LSR) is a standardised procedure for analysis of primary or secondary deformities of the lower limbs. Deep-learning convolutional neural networks (CNN) offer the potential to enhance radiological measurement by increasing reproducibility and accuracy. This study aims to evaluate the measurement accuracy of an automated CNN-based planning tool (mediCAD® 7.0; mediCAD Hectec GmbH) of lower limb deformities.

METHODS

In a retrospective single-centre study, 164 pre- and postoperative bilateral LSRs with uni- or bilateral posttraumatic knee arthritis undergoing total knee arthroplasty (TKA) were enroled. Alignment parameters relevant to knee arthroplasty and deformity correction were analysed independently by two observers and a CNN. The intraclass correlation coefficient (ICC) was used to evaluate the accuracy between observers and the CNN, which was further evaluated using absolute deviations, limits of agreement (LoA) and root mean square error (RMSE).

RESULTS

CNN evaluation demonstrated high consistency in measuring leg length (ICC > 0.99) and overall lower limb alignment measures of mechanical tibio-femoral angle (mTFA) (ICC > 0.97; RMSE < 1.1°). The mean absolute difference between angular measurements were low for overall lower limb alignment (mTFA 0.49-0.61°) and high for specific joint angles (aMPFA 3.86-4.50°). Accuracy at specific joint angles like the mechanical proximal tibial angle (MPTA) and the mechanical lateral distal femur angle (mLDFA) varied between lower limbs with deformity, with and without TKA with greatest difference for TKA (ICC 0.22-0.85; RMSE 1.72-3.65°).

CONCLUSION

Excellent accuracy was observed between manual and automated measurements for overall alignment and leg length, but joint-level metrics need further improvement especially in case of TKA similar to other existing algorithms. Despite the observed deviations, the time-efficient nature of the algorithm improves the efficiency of the preoperative planning process.

LEVEL OF EVIDENCE

Level IV.

摘要

目的

评估长腿站立位X线片(LSR)是分析下肢原发性或继发性畸形的标准化程序。深度学习卷积神经网络(CNN)通过提高可重复性和准确性,为增强放射学测量提供了潜力。本研究旨在评估基于CNN的下肢畸形自动规划工具(mediCAD® 7.0;mediCAD Hectec GmbH)的测量准确性。

方法

在一项回顾性单中心研究中,纳入了164例接受全膝关节置换术(TKA)的单侧或双侧创伤后膝关节炎患者术前和术后的双侧LSR。由两名观察者和一个CNN独立分析与膝关节置换术和畸形矫正相关的对线参数。组内相关系数(ICC)用于评估观察者与CNN之间的准确性,进一步使用绝对偏差、一致性界限(LoA)和均方根误差(RMSE)进行评估。

结果

CNN评估在测量腿长(ICC>0.99)和机械性胫股角(mTFA)的整体下肢对线测量方面显示出高度一致性(ICC>0.97;RMSE<1.1°)。对于整体下肢对线,角度测量的平均绝对差异较低(mTFA为0.49 - 0.61°),而对于特定关节角度则较高(aMPFA为3.86 - 4.50°)。在有畸形和无畸形的下肢中,以及在接受和未接受TKA的情况下,机械性胫骨近端角(MPTA)和机械性股骨远端外侧角(mLDFA)等特定关节角度的准确性各不相同,TKA的差异最大(ICC为0.22 - 0.85;RMSE为1.72 - 3.65°)。

结论

在整体对线和腿长的手动测量与自动测量之间观察到了出色的准确性,但关节水平的指标需要进一步改进,特别是在TKA的情况下,类似于其他现有算法。尽管观察到了偏差,但该算法的省时特性提高了术前规划过程的效率。

证据水平

四级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验