Suppr超能文献

使用基于模拟数据的深度学习技术检测诱导多能干细胞衍生的心肌细胞的生物磁信号。

Detection of biomagnetic signals from induced pluripotent stem cell-derived cardiomyocytes using deep learning with simulation data.

机构信息

Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.

Applied Electronics Laboratory, Kanazawa Institute of Technology, Ishikawa, 920-1331, Japan.

出版信息

Sci Rep. 2024 Mar 27;14(1):7296. doi: 10.1038/s41598-024-58010-0.

Abstract

The detection of spontaneous magnetic signals can be used for the non-invasive electrophysiological evaluation of induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs). We report that deep learning with a dataset that combines magnetic signals estimated using numerical simulation and actual noise data is effective in the detection of weak biomagnetic signals. To verify the feasibility of this method, we measured artificially generated magnetic signals that mimic cellular magnetic fields using a superconducting quantum interference device and attempted peak detection using a long short-term memory network. We correctly detected 80.0% of the peaks and the method achieved superior detection performance compared with conventional methods. Next, we attempted peak detection for magnetic signals measured from mouse iPS-CMs. The number of detected peaks was consistent with the spontaneous beats counted using microscopic observation and the average peak waveform achieved good similarity with the prediction. We also observed the synchronization of peak positions between simultaneously measured field potentials and magnetic signals. Furthermore, the magnetic measurements of cell samples treated with isoproterenol showed potential for the detection of chronotropic effects. These results suggest that the proposed method is effective and has potential application in the safety assessment of regenerative medicine and drug screening.

摘要

自发磁信号的检测可用于对诱导多能干细胞衍生的心肌细胞(iPS-CMs)进行非侵入性电生理评估。我们报告说,使用结合了数值模拟估计的磁信号和实际噪声数据的数据集进行深度学习,对于检测弱生物磁信号是有效的。为了验证该方法的可行性,我们使用超导量子干涉仪测量了模拟细胞磁场的人工产生的磁信号,并尝试使用长短期记忆网络进行峰值检测。我们正确检测到 80.0%的峰值,与传统方法相比,该方法具有优越的检测性能。接下来,我们尝试对从小鼠 iPS-CMs 测量到的磁信号进行峰值检测。检测到的峰值数量与使用显微镜观察计数的自发搏动一致,并且平均峰值波形与预测值具有良好的相似性。我们还观察到同时测量的场电位和磁信号之间的峰值位置的同步性。此外,对用异丙肾上腺素处理的细胞样本的磁测量显示出检测变时效应的潜力。这些结果表明,所提出的方法是有效的,并且在再生医学的安全性评估和药物筛选中具有潜在的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97dc/10973465/a985318f4bc1/41598_2024_58010_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验