Suppr超能文献

使用机器学习分析人类心肌细胞中的钙循环来描述心律失常。

Characterizing arrhythmia using machine learning analysis of Ca cycling in human cardiomyocytes.

机构信息

Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.

A(∗)STAR Skin Research Labs, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore.

出版信息

Stem Cell Reports. 2022 Aug 9;17(8):1810-1823. doi: 10.1016/j.stemcr.2022.06.005. Epub 2022 Jul 14.

Abstract

Accurate modeling of the heart electrophysiology to predict arrhythmia susceptibility remains a challenge. Current electrophysiological analyses are hypothesis-driven models drawing conclusions from changes in a small subset of electrophysiological parameters because of the difficulty of handling and understanding large datasets. Thus, we develop a framework to train machine learning classifiers to distinguish between healthy and arrhythmic cardiomyocytes using their calcium cycling properties. By training machine learning classifiers on a generated dataset containing a total of 3,003 healthy derived cardiomyocytes and their various arrhythmic states, the multi-class models achieved >90% accuracy in predicting arrhythmia presence and type. We also demonstrate that a binary classifier trained to distinguish cardiotoxic arrhythmia from healthy electrophysiology could determine the key biological changes associated with that specific arrhythmia. Therefore, machine learning algorithms can be used to characterize underlying arrhythmic patterns in samples to improve in vitro preclinical models and complement current in vivo systems.

摘要

准确地对心脏电生理学进行建模以预测心律失常易感性仍然是一个挑战。当前的电生理分析是基于假设的模型,这些模型从一小部分电生理参数的变化中得出结论,因为处理和理解大型数据集的难度很大。因此,我们开发了一个框架,使用机器学习分类器来训练,根据钙循环特性来区分健康和心律失常的心肌细胞。通过在一个包含总共 3003 个健康衍生的心肌细胞及其各种心律失常状态的生成数据集上训练机器学习分类器,多类模型在预测心律失常的存在和类型方面的准确率超过 90%。我们还证明,训练有素的二元分类器可以区分致心律失常性药物引起的心律失常和健康的电生理学,从而确定与特定心律失常相关的关键生物学变化。因此,机器学习算法可以用于对样本中的潜在心律失常模式进行特征描述,以改善体外临床前模型,并补充当前的体内系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d17b/9391413/fe12c93b08fb/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验