Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
Moscow State University, Moscow, Russia.
Dokl Biochem Biophys. 2024 Jun;516(1):98-106. doi: 10.1134/S1607672924700790. Epub 2024 Mar 27.
Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.
分析癌症发生和发展的机制是当代临床生物信息学和分子生物学的主要目标。利用组学数据,特别是转录组学,可以详细描述各种 RNA 类型相对于整个转录组的表达模式和转录后调控。在这里,我们组装了一个包含大约 16000 名患者的转录组数据的数据集,涵盖了 160 多种癌症。我们采用最先进的梯度提升算法来识别四种临床意义重大的 microRNA(hsa-mir-21、hsa-let-7a-1、hsa-let-7b 和 hsa-let-7i)的表达水平与其余 60660 个独特 RNA 之间的复杂相关性。我们的分析表明,所研究的 microRNA 的表达水平依赖于几种小核仁 RNA 和调控长非编码 RNA 的浓度。值得注意的是,这些 RNA 在特定癌症类型的发展中的作用已经通过实验证据得到了证实。随后对创建的数据库进行评估将有助于确定与各种癌症中不同 RNA 类别的表达水平变化相关的更广泛的总体依赖性。在未来,它将有可能发现某些特定类型的恶性转化所特有的独特改变。