Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
Genes (Basel). 2024 Mar 7;15(3):344. doi: 10.3390/genes15030344.
The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a -value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package , which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The package is available on CRAN.
错误发现率(FDR)是一种广泛用于基因组数据分析的统计显著性度量方法,涉及到多个假设检验。在进行这些类型的基因组数据分析时,功效和样本量的考虑非常重要。在这里,我们提出了一种 - 值直方图的三矩形逼近方法,推导出一个公式来计算涉及 FDR 的分析的统计功效和样本量。我们还引入了 R 包 ,它包含了这些和其他功效计算公式,用于计算其他 FDR 功效计算软件未涵盖的广泛研究的功效。提供了一些说明性示例。 包可在 CRAN 上获得。