Suppr超能文献

基于确切检验的 RNA-seq 数据差异表达分析样本量计算。

Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data.

机构信息

Center for Quantitative Sciences, Vanderbilt University, 571 Preston Building Nashville, TN, USA.

出版信息

BMC Bioinformatics. 2013 Dec 6;14:357. doi: 10.1186/1471-2105-14-357.

Abstract

BACKGROUND

Sample size calculation is an important issue in the experimental design of biomedical research. For RNA-seq experiments, the sample size calculation method based on the Poisson model has been proposed; however, when there are biological replicates, RNA-seq data could exhibit variation significantly greater than the mean (i.e. over-dispersion). The Poisson model cannot appropriately model the over-dispersion, and in such cases, the negative binomial model has been used as a natural extension of the Poisson model. Because the field currently lacks a sample size calculation method based on the negative binomial model for assessing differential expression analysis of RNA-seq data, we propose a method to calculate the sample size.

RESULTS

We propose a sample size calculation method based on the exact test for assessing differential expression analysis of RNA-seq data.

CONCLUSIONS

The proposed sample size calculation method is straightforward and not computationally intensive. Simulation studies to evaluate the performance of the proposed sample size method are presented; the results indicate our method works well, with achievement of desired power.

摘要

背景

样本量计算是生物医学研究实验设计中的一个重要问题。对于 RNA-seq 实验,已经提出了基于泊松模型的样本量计算方法;然而,当存在生物学重复时,RNA-seq 数据可能表现出比平均值大得多的变异(即过度离散)。泊松模型不能适当地对过度离散进行建模,在这种情况下,负二项式模型已被用作泊松模型的自然扩展。由于目前缺乏基于负二项式模型的用于评估 RNA-seq 数据差异表达分析的样本量计算方法,我们提出了一种计算样本量的方法。

结果

我们提出了一种基于确切检验的方法来计算用于评估 RNA-seq 数据差异表达分析的样本量。

结论

所提出的样本量计算方法简单直接,计算量不大。提出了评估所提出的样本量方法性能的模拟研究;结果表明,我们的方法效果良好,达到了预期的功效。

相似文献

10

引用本文的文献

9
Lower Back Pain as an Occupational Hazard Among Ugandan Health Workers.下背痛:乌干达卫生工作者的职业危害
Front Public Health. 2021 Dec 1;9:761765. doi: 10.3389/fpubh.2021.761765. eCollection 2021.

本文引用的文献

4
Design and validation issues in RNA-seq experiments.RNA-seq 实验中的设计和验证问题。
Brief Bioinform. 2011 May;12(3):280-7. doi: 10.1093/bib/bbr004. Epub 2011 Apr 15.
6
De novo assembly and analysis of RNA-seq data.从头组装和分析 RNA-seq 数据。
Nat Methods. 2010 Nov;7(11):909-12. doi: 10.1038/nmeth.1517. Epub 2010 Oct 10.
7
Alternative expression analysis by RNA sequencing.RNA 测序的替代表达分析。
Nat Methods. 2010 Oct;7(10):843-7. doi: 10.1038/nmeth.1503. Epub 2010 Sep 12.
8
Statistical design and analysis of RNA sequencing data.RNA 测序数据的统计设计与分析。
Genetics. 2010 Jun;185(2):405-16. doi: 10.1534/genetics.110.114983. Epub 2010 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验