Suppr超能文献

通过应用深度神经网络,发现了一种创新的血小板生成诱导剂——绿原酸 A。

An Innovative Inducer of Platelet Production, Isochlorogenic Acid A, Is Uncovered through the Application of Deep Neural Networks.

机构信息

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.

Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.

出版信息

Biomolecules. 2024 Feb 23;14(3):267. doi: 10.3390/biom14030267.

Abstract

(1) Background: Radiation-induced thrombocytopenia (RIT) often occurs in cancer patients undergoing radiation therapy, which can result in morbidity and even death. However, a notable deficiency exists in the availability of specific drugs designed for the treatment of RIT. (2) Methods: In our pursuit of new drugs for RIT treatment, we employed three deep learning (DL) algorithms: convolutional neural network (CNN), deep neural network (DNN), and a hybrid neural network that combines the computational characteristics of the two. These algorithms construct computational models that can screen compounds for drug activity by utilizing the distinct physicochemical properties of the molecules. The best model underwent testing using a set of 10 drugs endorsed by the US Food and Drug Administration (FDA) specifically for the treatment of thrombocytopenia. (3) Results: The Hybrid CNN+DNN (HCD) model demonstrated the most effective predictive performance on the test dataset, achieving an accuracy of 98.3% and a precision of 97.0%. Both metrics surpassed the performance of the other models, and the model predicted that seven FDA drugs would exhibit activity. Isochlorogenic acid A, identified through screening the Chinese Pharmacopoeia Natural Product Library, was subsequently subjected to experimental verification. The results indicated a substantial enhancement in the differentiation and maturation of megakaryocytes (MKs), along with a notable increase in platelet production. (4) Conclusions: This underscores the potential therapeutic efficacy of isochlorogenic acid A in addressing RIT.

摘要

(1) 背景:辐射诱导性血小板减少症(RIT)经常发生在接受放射治疗的癌症患者中,可导致发病率甚至死亡。然而,用于治疗 RIT 的特定药物的供应明显不足。

(2) 方法:在我们寻求治疗 RIT 的新药时,我们使用了三种深度学习(DL)算法:卷积神经网络(CNN)、深度神经网络(DNN)和结合两者计算特点的混合神经网络。这些算法构建了计算模型,可通过利用分子的独特理化性质筛选具有药物活性的化合物。最佳模型使用美国食品和药物管理局(FDA)专门批准用于治疗血小板减少症的 10 种药物的数据集进行了测试。

(3) 结果:Hybrid CNN+DNN(HCD)模型在测试数据集上表现出最有效的预测性能,准确率为 98.3%,精度为 97.0%。这两个指标均优于其他模型的性能,该模型预测七种 FDA 药物将具有活性。通过筛选《中国药典》天然产物库,鉴定出绿原酸 A,随后进行了实验验证。结果表明,其可显著增强巨核细胞(MKs)的分化和成熟,同时显著增加血小板生成。

(4) 结论:这突出了绿原酸 A 在治疗 RIT 方面的潜在治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d82/10968240/683e466ad8e7/biomolecules-14-00267-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验