Suppr超能文献

使用深度生成模型探索类药物空间。

Explore drug-like space with deep generative models.

作者信息

Wang Jianmin, Mao Jiashun, Wang Meng, Le Xiangyang, Wang Yunyun

机构信息

The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Korea.

Department of Biostatistics, School of Public Health, Harbin Medical University.

出版信息

Methods. 2023 Feb;210:52-59. doi: 10.1016/j.ymeth.2023.01.004. Epub 2023 Jan 19.

Abstract

The process of design/discovery of drugs involves the identification and design of novel molecules that have the desired properties and bind well to a given disease-relevant target. One of the main challenges to effectively identify potential drug candidates is to explore the vast drug-like chemical space to find novel chemical structures with desired physicochemical properties and biological characteristics. Moreover, the chemical space of currently available molecular libraries is only a small fraction of the total possible drug-like chemical space. Deep molecular generative models have received much attention and provide an alternative approach to the design and discovery of molecules. To efficiently explore the drug-like space, we first constructed the drug-like dataset and then performed the generative design of drug-like molecules using a Conditional Randomized Transformer approach with the molecular access system (MACCS) fingerprint as a condition and compared it with previously published molecular generative models. The results show that the deep molecular generative model explores the wider drug-like chemical space. The generated drug-like molecules share the chemical space with known drugs, and the drug-like space captured by the combination of quantitative estimation of drug-likeness (QED) and quantitative estimate of protein-protein interaction targeting drug-likeness (QEPPI) can cover a larger drug-like space. Finally, we show the potential application of the model in design of inhibitors of MDM2-p53 protein-protein interaction. Our results demonstrate the potential application of deep molecular generative models for guided exploration in drug-like chemical space and molecular design.

摘要

药物的设计/发现过程涉及识别和设计具有所需特性且能与特定疾病相关靶点良好结合的新型分子。有效识别潜在药物候选物的主要挑战之一是探索广阔的类药化学空间,以找到具有所需物理化学性质和生物学特性的新型化学结构。此外,当前可用分子库的化学空间只是整个可能的类药化学空间的一小部分。深度分子生成模型受到了广泛关注,并为分子的设计和发现提供了一种替代方法。为了有效地探索类药空间,我们首先构建了类药数据集,然后使用以分子访问系统(MACCS)指纹为条件的条件随机化变压器方法进行类药分子的生成设计,并将其与先前发表的分子生成模型进行比较。结果表明,深度分子生成模型探索了更广阔的类药化学空间。生成的类药分子与已知药物共享化学空间,并且通过类药性定量估计(QED)和靶向类药性的蛋白质-蛋白质相互作用定量估计(QEPPI)相结合所捕获的类药空间可以覆盖更大的类药空间。最后,我们展示了该模型在MDM2-p53蛋白质-蛋白质相互作用抑制剂设计中的潜在应用。我们的结果证明了深度分子生成模型在类药化学空间的引导探索和分子设计中的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验